Gerak melingkar (bahasa Inggris: circular motion) adalah gerak suatu benda yang membentuk lintasan berupa lingkaran mengelilingi suatu titik tetap. Agar suatu benda dapat bergerak melingkar ia membutuhkan adanya gaya yang selalu membelokkan-nya menuju pusat lintasan lingkaran. Gaya ini dinamakan gaya sentripetal. Suatu gerak melingkar beraturan dapat dikatakan sebagai suatu gerak dipercepat beraturan, mengingat perlu adanya suatu percepatan yang besarnya tetap dengan arah yang berubah, yang selalu mengubah arah gerak benda agar menempuh lintasan berbentuk lingkaran.[1]
Besaran gerak melingkar
Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah , dan atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan
berturut-turut dengan , dan .
Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.
Hubungan antar besaran sudut dan tangensial
Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui khusus untuk komponen tangensial, yaitu
Perhatikan bahwa di sini digunakan yang didefinisikan sebagai jarak yang ditempuh atau tali busur yang telah dilewati dalam suatu selang waktu dan bukan hanya posisi pada suatu saat, yaitu
untuk suatu selang waktu kecil atau sudut yang sempit.
Jenis gerak melingkar
Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:
gerak melingkar beraturan, dan
gerak melingkar berubah beraturan.
Gerak melingkar beraturan
Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial dengan jari-jari lintasan .
Arah kecepatan linier dalam GMB selalu menyinggung lintasan, yang berarti arahnya sama dengan arah kecepatan tangensial . Tetapnya nilai kecepatan akibat konsekuensi dar tetapnya nilai . Selain itu terdapat pula percepatan radial yang besarnya tetap dengan arah yang berubah. Percepatan ini disebut sebagai percepatan sentripetal, di mana arahnya selalu menunjuk ke pusat lingkaran.
Bila adalah waktu yang dibutuhkan untuk menyelesaikan satu putaran penuh dalam lintasan lingkaran , maka dapat pula dituliskan
Kinematika gerak melingkar beraturan adalah
dengan adalah sudut yang dilalui pada suatu saat , adalah sudut mula-mula dan adalah kecepatan sudut (yang tetap nilainya).
Ciri-ciri gerak melingkar beraturan:
Besar kelajuan linearnya tetap
Besar kecepatan sudutnya tetap
Besar percepatan sentripetalnya tetap
Lintasannya berupa lingkaran
Gerak melingkar berubah beraturan
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).
Kinematika GMBB adalah
dengan adalah percepatan sudut yang bernilai tetap dan adalah kecepatan sudut mula-mula.
Ciri-ciri gerak melingkar berubah beraturan:
Besar kelajuan linearnya berubah
Besar kecepatan sudutnya berubah
Besar percepatan sentripetalnya berubah
Lintasannya berupa lingkaran
Persamaan parametrik
Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan yang diperoleh melalui:
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
dengan dua konstanta dan yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai , maka dapat ditentukan nilai dan :
Perlu diketahui bahwa sebenarnya
karena merupakan sudut awal gerak melingkar.
Hubungan antar besaran linier dan angular
Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.
Kecepatan tangensial dan kecepatan sudut
Kecepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga
Percepatan tangensial dan kecepatan sudut
Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
dengan
diperoleh
sehingga
Kecepatan sudut tidak tetap
Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
dengan percepatan sudut dan kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
di mana adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara , dan melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.
Kecepatan sudut
Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
dengan
Dapat dibuktikan bahwa
sama dengan kasus pada GMB.
Gerak berubah beraturan
Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.