Share to:

 

2022 in paleomammalogy

List of years in paleomammalogy
In paleontology
2019
2020
2021
2022
2023
2024
2025
In paleobotany
2019
2020
2021
2022
2023
2024
2025
In arthropod paleontology
2019
2020
2021
2022
2023
2024
2025
In paleoentomology
2019
2020
2021
2022
2023
2024
2025
In paleoichthyology
2019
2020
2021
2022
2023
2024
2025
In paleomalacology
2019
2020
2021
2022
2023
2024
2025
In reptile paleontology
2019
2020
2021
2022
2023
2024
2025
In archosaur paleontology
2019
2020
2021
2022
2023
2024
2025

This paleomammology list records new fossil mammal taxa that were described during the year 2022, as well as notes other significant paleomammalogy discoveries and events which occurred during 2022.

Afrotherians

Proboscidea

Name Novelty Status Authors Age Type locality Country Notes Images

Platybelodon tetralophus[1]

Sp. nov

Valid

Wang & Li

Miocene

Tunggur Formation

 China

Stegotetrabelodon emiratus[2]

Sp. nov

Valid

Sanders

Miocene

Baynunah Formation

 United Arab Emirates

Proboscidean research

  • A study on the landscape-scale patterns in diet of mammoths and mastodons is published by Pardi & DeSantis (2022), who report evidence indicating that mammoths had significant dietary preferences for grass, but also engaged in more mixed-feeding in the areas outside the most environmentally suitable parts of their distribution, while the dietary preferences for mastodons were less resolved.[3]
  • Partial skeleton of a specimen of "Mammut" borsoni, representing one of the most recent record of mammutids in Europe reported to date, is described from the Villafranchian of Kaltensundheim (Thuringia, Germany) by Koenigswald et al. (2022).[4]
  • A study on patterns of landscape use by "Buesching mastodon" (recovered in 1998 from a peat farm near Fort Wayne, Indiana, United States) during its life is published by Miller et al. (2022), who interpret their findings as indicative of shifts in landscape use by this individual during adolescence and following maturation to adulthood, including increased monthly movements and development of a summer-only range and mating ground.[5]
  • A study on the carbon and oxygen isotope ratios in teeth of a sub-adult mastodon found in southern Brazil is published by Lopes et al. (2022), who interpret their findings as indicative of a diet shift during the life of the animal, and indicating that mastodons were able to change their diets at shorter timescales than can be addressed from the analysis of isolated teeth.[6]
  • Fossil material of a member or a relative of the genus Sinomastodon is described from the Quaternary of the Kashmir Valley by Parray et al. (2022), representing the youngest record of a gomphothere from the Indian Subcontinent reported to date.[7]
  • A study on the osteological anomalies in the vertebrae of Notiomastodon platensis from a new late Pleistocene site at Anolaima (Cundinamarca, Colombia) is published by Zorro-Luján et al. (2022), who interpret the studied anomalies as the result of nutritional deficiencies in essential minerals, caused by environmental stresses which were possibly related to the late Pleistocene environmental instability.[8]
  • Mothé et al. (2022) describe new fossil material of Notiomastodon platensis from three Pleistocene sites in the Valle del Cauca Department (Colombia), and interpret the distribution of the fossil material of N. platensis as indicating that this proboscidean used the inter-Andean valleys as migratory corridors, avoiding more prominent Andean hills.[9]
  • A study on the origin, dispersal and ecology of gomphotheres in South America is published by Alberdi & Prado (2022).[10]
  • Evidence indicating that the shovel-tusked gomphotheres from Florida (Amebelodon floridanus, Konobelodon britti, Serbelodon barbourensis) were leaf browsers that also ingested bark and twigs, using their upper tusks for scraping and slicing and their lower tusks for shoveling substrate (S. barbourensis and K. britti) or stripping and scraping (A. floridanus), is presented by Semprebon, Pirlo & Dudek (2022).[11]
  • A study on the range of size variation in palaeoloxodont elephants from Sicily, Favignana and Malta, inhabiting the Siculo-Maltese Palaeoarchipelago during the Pleistocene, and on possible reasons for size differences of these elephants is published by Scarborough (2022).[12]
  • A study on the morphological variation of samples of steppe mammoth and woolly mammoth remains, focusing on ca. 240,000-126,000 samples from Britain and the adjacent continent, is published by Lister (2022), providing evidence of a complex pattern of change in the transition from the steppe mammoth to the woolly mammoth in Europe.[13]
  • Evidence from woolly mammoth genomes (including genomes of two new Siberian specimens), indicating that genomic insertions and large deletions likely contributed to adaptive phenotypic evolution of the woolly mammoths, is presented by van der Valk et al. (2022).[14]

Sirenia

Name Novelty Status Authors Age Type locality Country Notes Images

Dakhlasiren[15]

Gen. et sp. nov

In press

Zouhri, Zalmout & Gingerich

Late Eocene

Samlat Formation

Western Sahara

A member of the family Protosirenidae. The type species is D. marocensis.

Sirenian research

  • A study on the phylogenetic relationships and evolutionary history of extant and fossil sirenians is published by Heritage & Seiffert (2022).[16]
  • Description of the anatomy of the skull of Sobrarbesiren cardieli and a study on the affinities of this taxon is published by Díaz-Berenguer et al. (2022).[17]

Euarchontoglires

Primates

Name Novelty Status Authors Age Type locality Country Notes Images

Chlorocebus ngedere[18]

Sp. nov

Arenson et al.

Early Pleistocene

Lower Ngaloba Beds

 Tanzania

A guenon

Khoratpithecus magnus[19]

Sp. nov

In press

Chaimanee et al.

Late Miocene

 Thailand

Sawecolobus[20]

Gen. et sp. nov

Valid

Gommery et al.

Late Miocene

Lukeino Formation

 Kenya

An Old World monkey belonging to the subfamily Colobinae. The type species is S. lukeinoensis.

Primate research

  • A study on the talar and calcaneal morphology in Eocene primates from the Vastan lignite mine (Gujarat, India), and on its implications for the knowledge of the locomotor capabilities of these primates, is published by Llera Martín, Rose & Sylvester (2022).[21]
  • A study on chipping patterns across the dentition of members of the genus Archaeolemur is published by Towle et al. (2022), who interpret their findings as indicating that members of this genus had a varied omnivorous diet and used their anterior teeth for extensive food processing.[22]
  • A study on the phylogenetic relationships of extant and fossil New World monkeys is published by Beck et al. (2022).[23]
  • A study on the internal nasal anatomy of Homunculus patagonicus, and on its implications for the knowledge of the phylogenetic affinities of this monkey, is published by Lundeen & Kay (2022).[24]
  • A study on the dental capabilities and potential dietary adaptations of Dolichopithecus ruscinensis is published by Plastiras et al. (2022), who interpret their findings as indicative of a more opportunistic feeding behavior for Dolichopithecus than characteristic of most extant colobines.[25]
  • Brasil et al. (2022) and Taylor et al. (2022) describe new assemblages of fossils of late Pleistocene Old World monkeys from the Middle Awash (Ethiopia), including fossils of the hamadryas baboons falling within the range of morphological variation observed for extant members of this species,[26] fossils of black-and-white colobuses with morphologies intermediate between Middle Pleistocene samples from the Asbole site and modern mantled guereza[27] and members or relatives of the genus Chlorocebus which might be ancestral to the monkeys currently living in the Afar region of Ethiopia.[28]
  • A study on the phylogenetic relationships for Middle-Late Miocene fossil apes is published by Pugh (2022).[29]
  • Rossie & Cote (2022) describe new fossil material of apes from the Miocene Lothidok Formation (Kenya), including a new mandible and an isolated molar of Turkanapithecus kalakolensis, expanding the knowledge of the lower molar morphology of the species; a new mandible of Simiolus enjiessi; and a new male specimen of Afropithecus turkanensis with unusual premolar morphology.[30]
  • Description of new fossil material of apes from the Miocene locality of Berg Aukas (Namibia) and new information on the locality of the ape mandible from the Miocene of Niger described by Pickford et al. (2008)[31] is published by Mocke et al. (2022), who evaluate the implications of these fossils for the knowledge of the evolution of the African apes.[32]
  • A study on the anatomy and affinities of Yuanmoupithecus xiaoyuan is published by Ji et al. (2022), who interpret Y. xiaoyuan as a close relative of extant gibbons, and reinterpret Kapi ramnagarensis as a pliopithecoid.[33]
  • A study on the occurrence and morphology of calcar femorale in extant and fossil hominids is published by Cazenave et al. (2022), who interpret their findings as indicating that this structure cannot be considered as a diagnostic feature of habitual bipedal locomotion.[34]
  • Dental remains of Gigantopithecus blacki, possibly belonging to one of the latest relict populations of Gigantopithecus, are described from the Upper Pleistocene deposits of the Lang Trang cave (Vietnam) by Lopatin, Maschenko & Dac (2022).[35]
  • A study on the paleoecology of fossil pongines, with a focus on Khoratpithecus ayeyarwadyensis is published by Habinger et al. (2022), who interpret the habitat of K. ayeyarwadyensis to be overall similar to that of modern orangutans, but with foraging at different levels in the canopy.[36]
  • A study on the locomotor behaviour of Sahelanthropus tchadensis, based on data from a femur and two ulnae from the Miocene of the Toros-Ménalla fossiliferous area (Chad), is published by Daver et al. (2022), who interpret the morphology of the femur as likely indicative of habitual bipedality, and the morphology of the ulnae as preserving evidence of substantial arboreal behaviour.[37]
  • Atypical tooth wear, similar to tooth wear previously reported in fossil hominins and regarded as possible evidence of early cultural habits, is reported in a sample of extant Japanese macaques from Koshima Island by Towle et al. (2022), who interpret the atypical wear patterns as likely caused by accidental ingestion of sand and oral processing of marine mollusks, and evaluate the implications of this finding for interpretations of similar wear in fossil hominins.[38]
  • A review aiming to determine the value of extant primates as models for reconstructions of fossil hominin stone tool culture is published by Bandini, Harrison & Motes-Rodrigo (2022).[39]

General paleoanthropology

  • Monson et al. (2022) present evidence indicative of an increase in prenatal growth rates of hominids over the last 6 million years, with significant increases aligning with major evolutionary changes (adaptation to bipedality, increase of brain size associated with the evolution of genus Homo, the evolution of Homo erectus), and with prenatal growth rates more similar to humans than to other extant apes evolving in members of the genus Homo ~0.25–0.75 million years ago.[40]
  • A study on the evolution of modern human brain size during the Pliocene and Pleistocene, combining fourteen previous studies that document the evolution of brain size in gracile hominins in a consensus time series, is published by Gingerich (2022) who identifies four successive phases of evolutionary stasis and change.[41]
  • Revision of the age of major South African hominin sites, based on faunal correlations of Old World monkeys from African Plio-Pleistocene sites, is published by Frost et al. (2022), who interpret their findings as indicating that there are no hominin sites in South Africa significantly older than ~2.8 million years.[42]
  • Pickford et al. (2022) describe new fossil material of Orrorin praegens and Praeanthropus afarensis from the Pliocene Mabaget Formation (Kenya), and study the paleoenvironment of both species, reporting that O. praegens was found alongside a forest-adapted fauna, while geologically younger P. afarensis was found alongside an open woodland to savannah-like fauna.[43]
  • A study on the likely diet of members of the genus Paranthropus is published by Sponheimer et al. (2022).[44]
  • A study aiming to determine whether it is possible to identify distinct groups of Paranthropus robustus consistently with their provenience from the sites of Kromdraai, Drimolen and Swartkrans (South Africa), based on data from new fossil material of P. robustus from Kromdraai and Drimolen, is published by Braga et al. (2022).[45]
  • A study on the origins of the complex birth pattern characteristic of modern humans, based on data from simulations of the birth process in australopithecines, is published by Frémondière et al. (2022).[46]
  • A study on the mechanical strength of the feeding apparatus of australopiths is published by Ledogar et al. (2022), who interpret their findings as indicating that the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania, with some gracile australopith crania as strong as that of a robust australopith, and hypothesize that the evolution of cranial traits of australopiths that increased the efficiency of bite force production may have simultaneously weakened their face.[47]
  • A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[48]
  • A study on the morphology and affinities of two 3.7-million-year-old hominin mandibles from Woranso-Mille is published by Yohannes Haile-Selassie et al. (2022), who report that the studied mandibles show morphological similarities with both Australopithecus anamensis and Australopithecus afarensis, and interpret their age and morphology as lending support to the hypothesized ancestor–descendant relationship between the two species.[49]
  • A study comparing the distal portion of the fibula of Australopithecus afarensis and extant humans and apes, aiming to determine the correlates of distal fibular shape with arboreal behavior in extant hominids and fossil hominins is published by Marchi et al. (2022).[50]
  • A study on the age of the Australopithecus fossils from the richest hominin-bearing deposit (Member 4) at Sterkfontein (South Africa) is published by Granger et al. (2022), who interpret their findings as placing nearly the entire Australopithecus assemblage at Sterkfontein in the mid-Pliocene, contemporaneous with Australopithecus afarensis in East Africa.[51]
  • A calcaneus of an early hominin, with a morphology that is intermediate between humans and nonhuman apes, is described from the Kromdraai fossil site (South Africa) by Harper et al. (2022).[52]
  • Zanolli et al. (2022) revise the dental fossil record of hominins the southern African sites of Sterkfontein, Swartkrans, Drimolen and Kromdraai B, and interpret their findings as indicative of a paucity of Homo remains and of increased levels of dental variation in australopith taxa, with some specimens of unclear generic status approximating the Homo condition in terms of overall enamel–dentine junction shape but retaining Australopithecus-like dental traits.[53]
  • A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[54]
  • A study on tooth marks on bones recovered from the Early Pleistocene David's Site (Bed I, Olduvai Gorge, Tanzania) is published by Cobo-Sánchez et al. (2022), who interpret their findings as indicating that early humans from David's Site had mostly primary access to fleshed carcasses prior to any other carnivore, with hyenas intervening after the deposition of carcass remains.[55]
  • A vertebra of a juvenile hominin is described from the early Pleistocene site of 'Ubeidiya (Israel) by Barash et al. (2022), who estimate the adult size of this hominin as comparable to early Pleistocene large-bodied hominins from Africa, and interpret this finding as the earliest large-bodied hominin remains from the Levantine corridor reported to date, distinct from other early Eurasian hominins, sharing affinities to East African large-bodied hominins, and supporting the occurrence of several Pleistocene dispersals of hominins out of Africa.[56]
  • A study on the 2.6 to 1.2 million years old zooarchaeological record of eastern Africa, aiming to determine whether the zooarchaeological record preserves sustained increase in the amount of evidence for hominin carnivory after the appearance of Homo erectus, is published by Barr et al. (2022).[57]
  • A study on the lesions of Dmanisi skull D2280 is published by Margvelashvili et al. (2022), who interpret the studied pathologies as evidence of blunt force trauma possibly caused by interpersonal violence, as well as evidence of treponemal disease.[58]
  • A study on fish remains from the early Middle Pleistocene (~780,000-years-old) site of Gesher Benot Ya'aqov (Israel) is published by Zohar et al. (2022), who interpret their findings as indicating that hominins from this site cooked fish before consumption, representing the earliest evidence of cooking by hominins reported to date.[59]
  • Evidence from the Zhoukoudian Locality 1 interpreted as indicative of controlled use of fire by Peking Man is presented by Huang, Li & Gao (2022).[60]
  • Description of the cochlear morphology of two individuals of Homo erectus from the Indonesian site Sangiran (Sangiran 2 and 4), comparing them with a sample australopiths and Middle to Late Pleistocene and extant humans, is published by Urciuoli et al. (2022).[61]
  • A study on the dispersal of Homo erectus in Southeast Asia is published by Husson et al. (2022), who determine H. erectus from the Sangiran site to be approximately 1.8-million-years-old, argue that the appearance of H. erectus in Java marks the onset of continental conditions there rather than the timing of their migration across Southeast Asia, and consider early H. erectus peopling Sundaland to be contemporary with their Chinese and Georgian counterparts.[62]
  • A study on the morphological variability among Middle Pleistocene Chinese hominins, aiming to determine the evolutionary processes that shaped hominin variation in eastern Eurasia during the Middle Pleistocene, is published by Liu et al. (2022).[63]
  • A study on the external and internal tooth structure in Homo luzonensis, and on its implications for the knowledge of the affinities of this species, is published by Zanolli et al. (2022).[64]
  • The first reconstruction of a fairly complete hominin posterior cranium from the late Middle Pleistocene Xujiayao site (China), and a study on the endocranial capacity of this cranium, is published by Wu et al. (2022), who interpret this specimen as the earliest evidence of a brain size that falls in the upper range of Neanderthals and modern Homo sapiens, and evaluate its implications for the knowledge of the evolution of the hominin brain size.[65]
  • A study on the Late Pleistocene human population dynamics, aiming to determine how the process of the replacement of Eurasian archaic humans by anatomically modern human populations dispersing from Africa unfolded, is published by Vahdati et al. (2022).[66]
  • A study on the development of teeth in Pleistocene hominins from the Gran Dolina and the Sima de los Huesos sites of the Sierra de Atapuerca (Spain) is published by Modesto-Mata et al. (2022).[67]
  • A study on the taphonomic features of the hominin skull remains from the Sima de los Huesos sample, aiming to create a catalog of modifications to crania and mandibles (including antemortem, perimortem and postmortem skeletal disturbances) within this sample, is published by Sala et al. (2022).[68]
  • A study aiming to determine the degree to which cranial variation seen in the fossil record of late Pleistocene hominins from Western Eurasia corresponds with the genetic data indicative of hybridization between distinct hominin lineages is published by Harvati & Ackermann (2022), who identify individual fossils as possibly admixed, and suggest that different cranial regions may preserve hybridization signals differentially.[69]
  • A hominin molar which might belong to a Denisovan is described from the Tam Ngu Hao 2 limestone cave in the Annamite Mountains (Laos) by Demeter et al. (2022).[70]
  • A study on the impact of the sexual dimorphism, ancestry and lifestyle effects on lordosis in a large sample of modern humans and Neanderthals is published by Williams et al. (2022), who interpret their findings as casting doubt on proposed locomotor and postural differences between modern humans and Neanderthals based on inferred lumbar lordosis (or lack thereof), and indicating that future studies should not compare remains of fossil hominins and preindustrial modern humans to samples from sedentary, industrialized populations, but rather to the remains of individuals that engaged in more active, traditional lifestyles.[71]
  • Putative Neanderthal footprints from Matalascañas (Province of Huelva, Spain), initially considered to be approximately 106,000 years old,[72] are reinterpreted as Middle Pleistocene in age (dating to the MIS 9-MIS 8 transition) by Mayoral et al. (2022).[73]
  • Four teeth of Neanderthals, belonging to at least two individuals (an adult and a child) and representing the earliest evidence of Neanderthal spread into the Eastern Mediterranean Area reported to date, are described from the Chibanian of the Velika Balanica cave (Serbia) by Roksandic et al. (2022).[74]
  • Andreeva et al. (2022) present mitochondrial DNA and genome sequencing results from the study of a tooth of a Neanderthal woman from the Mezmaiskaya cave (Adygea, Russia), and interpret their findings as indicating that the studied individual was more closely related to Neanderthals from the Mezmaiskaya cave and from the Stajnia cave (Poland) associated with the Eastern Micoquien context than with Western European Neanderthals associated with other Middle Paleolithic cultural facies, and that the studied individual was the last member of the early Neanderthal branches which were replaced by genetically distant late Neanderthal populations 60–40 thousand years ago.[75]
  • Skov et al. (2022) present genetic data for 13 Neanderthals from two Middle Palaeolithic sites (Chagyrskaya Cave and Okladnikov Cave) in the Altai Mountains of southern Siberia (Russia), and interpret their findings as indicating that some Chagyrskaya individuals were closely related (including a father–daughter pair) and that the Chagyrskaya Neanderthals were part of a small community.[76]
  • Evidence from zinc isotope analysis of tooth enamel of a Neanderthal individual from the cave site Cueva de los Moros 1 (Gabasa, Pyrenees, Spain), interpreted as supporting the interpretation of Neanderthals as carnivores, is presented by Jaouen et al. (2022).[77]
  • A study on the impact of climatic effects on ecosystem productivity during the Middle to Upper Palaeolithic transition in the Iberian Peninsula is published by Vidal-Cordasco et al. (2022), who interpret their findings as providing evidence of the impact of Marine Isotope Stage 3 stadial–interstadial cycles on ecosystem productivity, as well as indicative of coincidence of changes of net primary productivity with the spatial and temporal replacement patterns of Neanderthals by modern humans in Iberia, and indicating that Neanderthals survived longer in the areas where changes of ecosystem productivity were small.[78]
  • A study on the impact of the single amino acid change in TKTL1 differentiating modern humans from extinct archaic humans and other primates on neocortex development is published by Pinson et al. (2022), who consider it likely that this change was responsible for greater neocortical neurogenesis in modern humans than in Neanderthals.[79]
  • Foerster et al. (2022) present a 620,000-year environmental record from Chew Bahir (Ethiopia), providing evidence of three distinct phases of climate variability in eastern Africa which coincided with shifts in hominin evolution and dispersal.[80]
  • A study on the age of the Omo remains is published by Vidal et al. (2022).[81]
  • A study on the anatomy of the brain, braincase and bony labyrinth of the Border Cave 1 cranium is published by Beaudet et al. (2022).[82]
  • A study on the endocranial development in early Homo sapiens, based on data from fossil material of child and adult individuals from Herto (Ethiopia), Skhul and Qafzeh (Israel), is published by Zollikofer et al. (2022), who interpret their findings as indicating that brain growth dynamics of Pleistocene H. sapiens might have had more in common with Neanderthals than with modern H. sapiens, as well as indicating that the brains of fossil and modern H. sapiens were probably structurally similar, and that the differences of shape of braincases between fossil and modern adult individuals of H. sapiens were not caused by different brain anatomy, and were more likely caused by factors such as effects of shift to softer diets and/or reduced metabolic demands on craniofacial size and shape.[83]
  • Reconstruction of the eastern African environments inhabited by early human populations during the Middle Stone Age, evaluating the role of shifting environmental conditions on the distribution and variability of dated Middle Stone Age assemblages, is published by Timbrell et al. (2022).[84]
  • Evidence of four periods of human occupation between c. 210,000 and 120,000 years ago is reported from Jebel Faya (United Arab Emirates) by Bretzke et al. (2022), who evaluate the implications of these findings for the knowledge of the impact of arid conditions on Paleolithic human populations in Arabia.[85]
  • A study on the range of hunter-gatherer presence across Central Africa over the past 120,000 years, inferred from paleoclimatic reconstructions and archaeological sites, is published by Padilla-Iglesias et al. (2022).[86]
  • Possible evidence of use of fruits and wood from olive trees by the early Homo sapiens around 100,000 years ago is reported from Morocco by Marquer et al. (2022).[87]
  • Evidence of the production of ostrich eggshell artefacts, long-distance transportation of marine molluscs and systematic use of heat shatter in stone tool production approximately 92–80 thousand years before the present is reported from the Varsche Rivier 003 site (South Africa) by Mackay et al. (2022), who evaluate the implications of these findings for the knowledge of the processes of innovation and cultural transmission in southern Africa during the Middle Stone Age.[88]
  • Hominin fossils interpreted as evidence of the earliest known arrival of modern humans in Europe (between 56,800 and 51,700 calibrated years before the present) are described from the Grotte Mandrin (France) by Slimak et al. (2022).[89]
  • A study on the microstructure and likely origin of the material used to produce the Venus of Willendorf is published by Weber et al. (2022).[90]
  • The earliest ochre-processing feature in Eastern Asia reported to date, a bone tool and a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, representing a cultural assembly of traits that is unique for Eastern Asia, is described from the approximately 40,000-year-old Xiamabei site (China) by Wang et al. (2022).[91]
  • Maloney et al. (2022) report the discovery of remains of a young individual from the Liang Tebo cave (East Kalimantan, Indonesia) living at least 31,000 years ago, interpreted as surviving the surgical amputation of part of their leg and living for another 6–9 years.[92]
  • Zhang et al. (2022) sequence the genome of a Late Pleistocene hominin from Red Deer Cave (Yunnan, China), and interpret hominins from Red Deer Cave as members of an early diversified lineage of anatomically modern humans in East Asia with a link to the ancestry that contributed to First Americans.[93]
  • A study on patterns in the stratigraphic integrity of early North American archeological sites, and on their implications for the knowledge of the timing of human arrival to North America, is published by Surovell et al. (2022).[94]
  • Rowe et al. (2022) study the bone assemblage from the Hartley mammoth locality (Colorado, United States) dating to 38,900–36,250 calibrated years before the present, and interpret this assemblage as a butchery site.[95]
  • Davis et al. (2022) report the discovery of an assemblage of stemmed projectile points from Cooper's Ferry site (Idaho, United States), dating to ~16,000 years ago and predating stemmed points found previously at the site (as well as Clovis fluted points), and note the similarity of the studied projectile points with projectiles from late Upper Paleolithic sites in Hokkaido (Japan).[96]
  • A study on the authenticity of the potential Ice Age rock art of Serranía de la Lindosa (Colombia) is published by Iriarte et al. (2022), who argue that there are sound grounds to consider the studied paintings as ancient and likely representing now-extinct Ice Age megafauna.[97]
  • Lipson et al. (2022) present new genome-wide ancient DNA data from three Late Pleistocene and three early to middle Holocene individuals associated with Late Stone Age technologies from Kisese II and Mlambalasi Rockshelters in Tanzania, Fingira and Hora 1 Rockshelters in Malawi and Kalemba Rockshelter in Zambia, and study changes in regional- and continental-scale population structures in sub-Saharan Africa during the Late Pleistocene and early Holocene.[98]
  • Computational biologists report the largest detailed human genetic genealogy, unifying human genomes from many sources for insights about human history, ancestry and evolution. It demonstrates a novel computational method for estimating how human DNA is related, in specific as a series of 13 million linked trees along the genome, a tree-sequence, which has also been called "the largest human family tree".[99][100][101]
  • Geneticists report that the fastest-evolved regions of the human genome, they call HAQERs, "rapidly diverged in an episodic burst"[clarification needed] of positive selection prior to the human-Neanderthal split and identify over 1,500 such HAQERs that substantially distinguish humans from related other apes via datasets such as of HARs and experiments that use embryonic mouse brains.[102][103]

Rodentia

Name Novelty Status Authors Age Type locality Country Notes Images

Cedromus modicus[104]

Sp. nov

Valid

Korth et al.

Chadronian-Orellan

Brule Formation

 United States
( Nebraska)

A member of the family Sciuridae.

Costepeiromys[104]

Gen. et sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

A member of the family Aplodontiidae belonging to the subfamily Prosciurinae. The type species is C. attasorus.

Debruijnia tintinnabulus[105]

Sp. nov

In press

De Bruijn et al.

Late Eocene

 Serbia

A member of the family Spalacidae.

Eoelfomys[106]

Gen. et sp. nov

In press

Vianey-Liaud & Hautier

Eocene

 France

A member of Theridomyoidea. The type species is E. lapradensis.

Eumyarion aegeaniensis[107]

Sp. nov

In press

Bilgin et al.

Early Miocene

 Turkey

Eumyarion beyderensis[107]

Sp. nov

In press

Bilgin et al.

Early Miocene

 Turkey

Heosminthus teredens[108]

Sp. nov

Valid

Calede, Tse & Cairns

Arikareean

 United States
( Montana)

A member of the family Sminthidae.

Homœtreposciurus[106]

Gen. et sp. nov

In press

Vianey-Liaud & Hautier

Eocene

  Switzerland

A member of Theridomyoidea. The type species is H. egerkingensis.

Hydrochoerus hesperotiganites[109]

Sp. nov

Valid

White et al.

Late Pleistocene

 United States
( California)

A species of Capybara.

Hystrix velunensis[110]

Sp. nov

Valid

Czernielewski

Pliocene

 Poland

A species of Hystrix. Announced in 2022; the final article version was published in 2023.

Ischyromys brevidens[104]

Sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

Jebelus[111]

Gen. et sp. nov

Valid

Kraatz

Miocene

Baynunah Formation

 United Arab Emirates

A member of the subfamily Gerbillinae. The type species is J. rex.

Kanisamys kutchensis[112]

Sp. nov

Valid

Patnaik et al.

Late Miocene

 India

A rhizomyine.

Keramidomys sibiricus[113]

Sp. nov

Valid

Daxner-Höck et al.

Miocene

Tagay Formation

 Russia
( Irkutsk Oblast)

A member of the family Eomyidae.

Kirkomys miriamae[104]

Sp. nov

Valid

Korth et al.

Chadronian

Chadron Formation

 United States
( Nebraska)

A member of the family Florentiamyidae.

Litoyoderimys grossus[104]

Sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

A member of the family Eomyidae.

Manchenomys[114]

Gen. et sp. et comb. nov

Valid

Agustí et al.

Early Pleistocene

Baza Formation

 Spain

A member of Arvicolidae. The type species is M. orcensis; genus also includes "Mimomys" oswaldoreigi Agustí, Castillo & Galobart (1993).

Masillamys cosensis[115]

Sp. nov

Valid

Vianey-Liaud et al.

Eocene (Lutetian)

 France

A member of Theridomorpha belonging to the family Masillamyidae.

Megacricetodon grueneri[116]

Sp. nov

Valid

Čermák, Oliver & Fejfar

Miocene

 Czech Republic

A member of the family Cricetidae.

Microtheriomys articulaquaticus[117]

Sp. nov

Calede

Arikareean

Renova Formation

 United States
( Montana)

A member of the family Castoridae belonging to the subfamily Anchitheriomyinae.

Microtus nivaloides lidiae[118]

Ssp. nov

Valid

Markova & Borodin

Middle Pleistocene

 Russia

A vole belonging to the genus Microtus.

Mus kerati[119]

Sp. nov

Valid

Stoetzel & Pickford

Middle Pleistocene

 Algeria

A species of Mus.

Myocricetodon gujaratensis[112]

Sp. nov

Valid

Patnaik et al.

Late Miocene

 India

A gerbilline.

Paradjidaumo patriciae[104]

Sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

A member of the family Eomyidae.

Paraethomys geraadsi[119]

Sp. nov

Valid

Stoetzel & Pickford

Middle Pleistocene

 Algeria

A member of the family Muridae belonging to the subfamily Murinae.

Pararhizomys parvulus[120]

Sp. nov

Valid

Wang

Miocene

Probably Liushu Formation

 China

A member of the family Spalacidae belonging to the subfamily Tachyoryctoidinae and the tribe Pararhizomyini.

Progonomys prasadi[112]

Sp. nov

Valid

Patnaik et al.

Late Miocene

 India

A murine.

Protansomys[104]

Gen. et sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

A member of the family Aplodontiidae belonging to the subfamily Ansomyinae. The type species is P. gulottai.

Shapajamys minor[121]

Sp. nov

Valid

Arnal et al.

Paleogene

Santa Rosa fossil site

 Peru

A caviomorph rodent.

Sinotamias lungui[122]

Sp. nov

Valid

Sinitsa & Delinschi

Late Miocene

 Moldova
 Ukraine

A ground squirrel.

Sinotamias topachevskyi[122]

Sp. nov

Valid

Sinitsa & Delinschi

Late Miocene

 Moldova
 Ukraine

A ground squirrel.

Siouxlindrodon[104]

Gen. et sp. nov

Valid

Korth et al.

Chadronian

Chadron Formation

 United States
( Nebraska)

A member of the family Cylindrodontidae. The type species is S. sullivani.

Spermophilinus debruijni[123]

Sp. nov

Valid

Daxner-Höck et al.

Miocene

Tagay Formation

 Russia
( Irkutsk Oblast)

A member of the family Sciuridae belonging to the subfamily Sciurinae.

Tamias gilaharee[112]

Sp. nov

Valid

Patnaik et al.

Late Miocene

 India

A species of Tamias.

Tobienia fejfari[124]

Sp. nov

Valid

Tesakov & Bondarev

Late Pliocene

 Russia

A member of the tribe Lemmini.

Ucayalimys amahuacensis[121]

Sp. nov

Valid

Arnal et al.

Paleogene

Santa Rosa fossil site

 Peru

A caviomorph rodent, possibly a member of Chinchilloidea.

Vucetichimys[121]

Gen. et sp. nov

Valid

Arnal et al.

Paleogene

Santa Rosa fossil site

 Peru

A caviomorph rodent.
The type species is V. pretrilophodoncia.

Yoderimys massarae[104]

Sp. nov

Valid

Korth et al.

Chadronian

Chadron Formation

 United States
( Nebraska)

A member of the family Eomyidae.

Rodent research

  • A study on the fossil record of rodents from the early Eocene to the early Oligocene in Central, East and South Asia is published by Li et al. (2022), who interpret the studied fossil material as indicative of faunal turnover of rodents in East Asia which was affected by paleoclimatic changes, as well as suggestive of faunal exchanges between South Asia and Africa during the Sharamurunian and Ergilian.[125]
  • A well-preserved skull of Miopetaurista crusafonti, with the cranial morphology almost identical to extant large flying squirrels but with the encephalization quotient lower than observed in extant flying squirrels, is described from the Miocene of Bavaria (Germany) by Grau-Camats et al. (2022).[126]
  • New estimates of body mass of extinct giant rodents, including estimates for Josephoartigasia monesi and Phoberomys pattersoni which are much lower than in previous studies, are presented by Engelman (2022).[127]
  • Pessoa-Lima et al. (2022) compare the morphological features and chemical composition of tooth enamel of Neoepiblema and extant capybara.[128]
  • Description of new fossil material of Hystrix makapanensis from Olduvai Gorge (Tanzania) and a review of the African record of this species is published by Azzarà et al. (2022).[129]
  • The first description of the postcranial remains of Bathyergoides neotertiarius from the Miocene of Namibia is published by Bento Da Costa & Senut (2022), who evaluate the implications of the studied fossils for the knowledge of the behaviour of this rodent.[130]
  • Description of new fossil material and a study on the taxonomic diversity of dinomyids from the late Miocene-early Pliocene Cerro Azul Formation (Argentina) is published by Sostillo et al. (2022).[131]
  • A study on the validity of the genus Gyriabrus, and a revision of the species assigned to this genus, is published by Rasia (2022).[132]
  • Revision of the fossil material assigned to members of the genus Cephalomyopsis, as well as a taxonomic revision of this genus, is published by Busker (2022).[133]
  • Description of cavioid, chinchilloid and erethizontoid rodents from the Miocene Pampa Castillo fauna (Chile) and a study on their biochronologic and paleoenvironmental implications is published by McGrath et al. (2022).[134]
  • A study on the enamel microstructure of lower incisors of eomyids is published by Kalthoff et al. (2022), who interpret the incisor enamel microstructure of these rodents as supporting their phylogenetic placement outside Geomorpha.[135]
  • Lechner & Böhme (2022) describe new fossil material of Steneofiber depereti from the Miocene Hammerschmiede clay pit (Germany), who interpret the studied material as representing a morphologically intermediate stage between S. depereti and Chalicomys jaegeri, and interpret the tooth wear stages of the studied premolars from Hammerschmiede as indicative of similarities in demography and ecology, including similar habitat requirements, between S. depereti and extant beavers.[136]
  • Mörs et al. (2022) describe fossil material of Euroxenomys minutus from the Miocene of the Tagay locality (Olkhon Island, Irkutsk Oblast, Russia), representing the first known record of this species from Asia and the northernmost record of Eurasian Miocene beavers reported to date.[137]
  • A study on the phylogenetic relationships of Paronychomys and Basirepomys is published by Kelly & Martin (2022).[138]
  • A study on the anatomy of the skull of Hispanomys moralesi is published by Carro-Rodríguez et al. (2022).[139]
  • Description of the anatomy of the holotype specimen of the Tenerife giant rat is published by Casanovas-Vilar & Luján (2022).[140]

Other euarchontoglires

Name Novelty Status Authors Age Type locality Country Notes Images

Bohlinotona mongolica[141]

Sp. nov

Valid

Erbajeva, Flynn & Daxner-Höck

Late Oligocene

Hsanda Gol Formation

 Mongolia

A member of the family Ochotonidae belonging to the subfamily Sinolagomyinae.

Pronolagus humpatensis[142]

Sp. nov

Valid

Sen & Pickford

Early Pleistocene

 Angola

A red rock hare.

Sivatupaia[143]

Gen. et sp. nov

Valid

Sehgal et al.

Miocene

 India

A treeshrew. The type species is S. ramnagarensis.

Other euarchontoglire research

  • A study on the cranial traits of extant and extinct lagomorphs is published by Wood-Bailey, Cox & Sharp (2022), who argue that the last common ancestor of living leporids likely had an intracranial joint and some form of facial tilt, while these features were likely absent in the last common ancestor of all lagomorphs.[144]
  • A study on the evolution of the lower fourth premolars and lower second molars in microsyopine plesiadapiforms from the early Eocene of the Bighorn Basin (Wyoming, United States) is published by Selig & Silcox (2022), who report that the studied premorals became increasingly more similar to molars through time, but do not observe any associated change of the molars.[145]

Laurasiatherians

Artiodactyla

Name Novelty Status Authors Age Type locality Country Notes Images

Afrotragulus akhtari[146]

Sp. nov

Valid

Sánchez et al.

Miocene

 Pakistan

A chevrotain.

Afrotragulus megalomilos[146]

Sp. nov

Valid

Sánchez et al.

Miocene

 Pakistan

A chevrotain.

Afrotragulus moralesi[146]

Sp. nov

Valid

Sánchez et al.

Miocene

 Pakistan

A chevrotain.

Angelocetus[147]

Gen. et sp. nov

Valid

Peri et al.

Miocene (Burdigalian)

 Italy

A toothed whale belonging to the group Physeteroidea. The type species is A. cursiensis.

Antaecetus[148]

Gen. et comb. nov

Valid

Gingerich, Amane & Zouhri

Eocene (Bartonian)

Aridal Formation

Western Sahara

A basilosaurid cetacean. The type species is "Platyosphys" aithai Gingerich & Zouhri (2015).

Archaebalaenoptera eusebioi[149]

Sp. nov

Valid

Bisconti et al.

Miocene (Tortonian)

Pisco Formation

 Peru

A rorqual.

Discokeryx[150]

Gen. et sp. nov

Wang et al.

Early Miocene

Halamagai Formation

 China

A member of Giraffoidea belonging to the family Prolibytheriidae. The type species is D. xiezhi.

Ebusia[151]

Gen. et sp. nov

Valid

Moyà-Solà, Quintana Cardona & Köhler

Probably Neogene

 Spain

A caprine bovid. The type species is E. moralesi.

Hemiauchenia mirim[152] Sp. nov Valid Greco et al. Late Pleistocene  Brazil A camelid.

Jobancetus[153]

Gen. et sp. nov

Valid

Kimura, Hasegawa & Suzuki

Miocene (Burdigalian)

Minamishirado Formation

 Japan

A baleen whale of uncertain affinities. Genus includes new species J. pacificus. Published online in 2022, but the issue date is listed as January 2023.[153]

Kaaucetus[154]

Gen. et sp. nov

Valid

Hernández-Cisneros

Late Oligocene

El Cien Formation

 Mexico

An aetiocetid cetacean. Genus includes new species K. thesaurus.

Libytherium proton[155]

Sp. nov

Valid

Ríos et al.

Miocene

 Pakistan

Linxiatragus[156]

Gen. et sp. nov

Wang et al.

Miocene

Linxia Basin

 China

An antelope belonging to the tribe Nesotragini. The type species is L. dengi.

Listriodon dukkar[157]

Sp. nov

Valid

Van der Made et al.

Late Miocene

 India

A member of the family Suidae belonging to the subfamily Listriodontinae.

Miophyseter[158]

Gen. et sp. nov

Valid

Kimura & Hasegawa

Miocene (Burdigalian)

Toyohama Formation

 Japan

A Physeteroidea sperm whale.
Type species M. chitaensis.

Neochorlakkia[159]

Gen. et sp. nov

Valid

Ducrocq et al.

Eocene

Pondaung Formation

 Myanmar

A member of the family Dichobunidae. The type species is N. myaingensis.

Persufflatius[160]

Gen. et sp. nov

Valid

Bosselaers & Munsterman

Miocene (Tortonian)

Diessen Formation

 Netherlands

A baleen whale belonging to the group Balaenomorpha. The type species is P. renefraaijeni.

Propotamochoerus aegaeus[161]

Sp. nov

Valid

Lazaridis, Tsoukala & Kostopoulos

Miocene (Turolian)

 Bulgaria
 Greece
 North Macedonia
 Italy?
 Turkey?

A member of the family Suidae belonging to the subfamily Suinae and the tribe Dicoryphochoerini.

Rododelphis[162]

Gen. et sp. nov

Valid

Bianucci et al.

Early Pleistocene

Lindos Formation

 Greece

An oceanic dolphin belonging to the subfamily Globicephalinae. Type species is R. stamatiadisi.

Rusingameryx[163]

Gen. et comb. nov

Valid

Pickford

Miocene

 Kenya
 Namibia
 Uganda

An anthracothere. The type species is "Brachyodus" aequatorialis MacInnes (1951).

Ua[164]

Gen. et sp. nov

Solounias, Smith & Rios Ibàñez

Miocene

Chinji Formation

 Pakistan

A member of the family Giraffidae, possibly a relative of the okapi. The type species is U. pilbeami. The generic name is shared with the hymenopteran genus Ua Girault (1929).[165]

Artiodactyl research

  • Revision of the systematics of the camelids belonging to the genera Gentilicamelus and Nothokemas is published by Marriott, Prothero & Beatty (2022).[166]
  • A study on the diet and habitat of specimens of Camelops hesternus, Hemiauchenia macrocephala and H. gracilis from two Pleistocene sites in west-central Mexico is published by Marín-Leyva et al. (2022).[167]
  • A study on the diet of Hemiauchenia paradoxa, guanaco and vicuña from the Pleistocene of southern Brazil is published by Carrasco et al. (2022).[168]
  • Description of camel remains from the Tsagaan Agui Cave and the Tugrug Shireet open-air site (Mongolia), including fossil material of Camelus knoblochi, is published by Klementiev et al. (2022), who interpret their findings as evidence of survival of C. knoblochi in the Gobi Desert until the Last Glacial Maximum.[169]
  • New fossil material of Miocene suids is described from the Siwaliks of Pakistan by Raza et al. (2022), providing new information on the diversification and evolution of suids from this area.[170]
  • A study on the relationship between functional occlusal traits, dental wear and increase in crown length in the third molars of Pliocene and Pleistocene African suids, aiming to determine the evolutionary trends of the functional occlusal traits in these suids in the context of their dietary ecology and potential selective pressures, is published by Yang et al. (2022).[171]
  • A study on the evolutionary history of ruminants, as inferred from their inner ear morphology, is published by Mennecart et al. (2022).[172]
  • Redescription of the first complete skull of Dorcatherium naui from the Miocene locality of Eppelsheim, comparing it with two new skulls from the late Miocene hominid locality Hammerschmiede (Germany), is published by Hartung & Böhme (2022), who interpret the studied fossils as indicative of significant sexual dimorphism on cranial features in D. naui.[173]
  • Review of the large-sized members of the genus Palaeotragus from the Vallesian of northern Greece, and a systematic revision of large-sized Late Miocene Eurasian members of the genus Palaeotragus, is published by Laskos & Kostopoulos (2022).[174]
  • Ríos et al. (2022) describe a new partial skull of Decennatherium rex from the Miocene site Batallones-10 (Madrid Basin, Spain), providing new information on the variability of the cranial appendages in this species.[175]
  • New fossil material of a member of the genus Acteocemas belonging or related to the species A. infans, providing evidence that protoantlers of Acteocemas were able to be cast and re-grown (but also indicating that the lifespan of these protoantlers could be longer than that of antlers of modern deer, preventing them from assuming a similar cycle), is described from the Miocene site of Sant Andreu de la Barca (Spain) by Azanza et al. (2022).[176]
  • A study on the biogeographic history of deer belonging to the subfamilies Cervinae and Capreolinae is published by Croitor (2022).[177]
  • New antler remains are described from the Upper Siwaliks in Pakistan by Croitor et al. (2022), who interpret the antler material as indicative of the presence of six cervid forms in the Upper Siwaliks, including the earliest paleontological record of the lineage of Panolia reported to date.[178]
  • A study on the histology of ribs of Candiacervus, and on its implications for the knowledge of the longevity of this deer, is published by Miszkiewicz & Van Der Geer (2022).[179]
  • A study aiming to reconstruct the body mass of the individual species belonging to the genus Candiacervus is published by Besiou et al. (2022).[180]
  • A study on the mechanical performances of the mandible of Sinomegaceros pachyosteus is published by Fu et al. (2022), who interpret this cervid as a likely grazer with a diet similar to those of horses or buffaloes.[181]
  • Evidence from the strontium isotope analysis of the tooth enamel of the Irish elk, interpreted as consistent with the presence of seasonal mobility in the specimen from Ballybetagh (Dublin, Republic of Ireland), is presented by Douw et al. (2022), who argue that the mobility of the Ballybetagh specimen might have been a response to the climatic deterioration of the Younger Dryas.[182]
  • A study on the evolutionary history of the Siberian roe deer, as indicated by data from four ancient mitochondrial genomes generated from roe deer fossil specimens from northeastern China, is published by Deng et al. (2022).[183]
  • A study on the evolutionary history of red deer in northern China, based on data from mitochondrial genomes of extant and late Pleistocene deer, is published by Xiao et al. (2022).[184]
  • Exceptionally preserved fossil material of "Pseudodama" nestii, providing new information on the anatomy and affinities of this cervid, is described from the Early Pleistocene locality of Pantalla (Italy) by Cherin et al. (2022), who report evidence of anomalies in two male crania from the sample from Pantalla interpreted as likely result of different traumas during the life of these individuals, and interpret the age and sex structure of the population from this site as likely indicating that the Pantalla deer died during or immediately after the rutting season.[185]
  • Description of new fossil material of Qurliqnoria cheni from the northern Tibetan Plateau, providing new information on the anatomy of this bovid, is published by Tseng et al. (2022), who evaluate the implications of this finding for the knowledge of the evolution of the Tibetan antelope.[186]
  • Redescription of Qurliqnoria hundesiensis, based on reexamination of the holotype and data from new fossil material, is published by Wang, Li & Tseng (2022), who consider it unlikely that the Pliocene Qurliqnoria was a direct ancestor of the Tibetan antelope.[187]
  • Vislobokova (2022) describes caprine fossil material from the Lower Pleistocene deposits of the Taurida Cave (Crimea), interpreted as fossil material of Soergelia minor and representing the first evidence of the presence of the genus Soergelia in Eastern Europe.[188]
  • Neto de Carvalho et al. (2022) describe large artiodactyl tracks from early Late Pleistocene sites in southwestern Spain, name a new ichnotaxon Bovinichnus uripeda, and interpret the studied tracks as produced by the aurochs, providing evidence of recurrent use of the coastal habitat by these bovids.[189]
  • The first complete skull of Bothriogenys fraasi from the Oligocene deposits of the Fayum Depression (Egypt) is described by Sileem & Abu El-Kheir (2022).[190]
  • A relatively complete cranium and mandible of Brachyodus onoideus, providing new information on the anatomy of this anthracothere, is described by Pickford & MacLaren (2022).[191]
  • Review of the systematics of the American anthracotheres is published by Prothero, Marriott & Welsh (2022).[192]
  • A study on the dental microwear and likely diet of Anthracotherium and Entelodon is published by Rivals et al. (2022), who interpret their findings as indicating that Entelodon had an omnivorous diet similar to that of the extant wild boar, while Anthracotherium was an opportunistic herbivore, with different individuals recovered as browsers, frugivores and grazers.[193]
  • A study comparing changes in the skull anatomy during the ontogeny in Hippopotamus gorgops and extant hippopotamus, based on data from the skull of a juvenile specimen of H. gorgops from the Early Pleistocene site of Buia (Eritrea), is published by Martínez-Navarro et al. (2022).[194]
  • A study on the functional morphology of the hindlimbs of the Cyprus dwarf hippopotamus is published by Georgitsis et al. (2022), who interpret their findings as indicative of specialized locomotion of this hippopotamus, resulting from modifications to its limbs influenced by the mountainous island environment and the body size reduction.[195]
  • A study aiming to reconstruct the drivers of shape variation, morphological diversity and evolutionary rate in the cetacean cranium throughout their evolutionary history is published by Coombs et al. (2022).[196]
  • A study on palates of living and fossil cetaceans and living terrestrial artiodactyls is published by Peredo, Pyenson & Uhem (2022), who interpret their findings as indicating that the presence of lateral palatal foramina alone cannot be used to infer the presence of baleen in mysticetes;[197] their conclusions are subsequently contested by Ekdale et al. (2024).[198]
  • A study aiming to quantify light-activation metrics in rhodopsin pigments of cetaceans throughout their evolutionary history is published by Dungan & Chang (2022), who interpret their findings as indicating that some of the first fully aquatic cetaceans could dive into the mesopelagic zone, and that this behavior arose before the divergence of toothed and baleen whales.[199]
  • A study on the evolution of the skull in mosasaurids and early cetaceans during the first 20 million years of their evolutionary histories, testing for possible instances of ecomorphological convergence in the skulls and teeth between the groups, is published by Bennion et al. (2022).[200]
  • Chakraborty & Sengupta (2022) describe a nearly complete skull of Remingtonocetus harudiensis from the Eocene Harudi Formation (India), representing the largest skull of Remingtonocetus discovered to date, and providing new information on the skull morphology of this cetacean.[201]
  • Fossil material of a basilosaurid cetacean is described from the Eocene Beloglinskaya Formation (Krasnodar Krai, Russia) by Tarasenko (2022), representing the first record of a basilosaurid in the studied region.[202]
  • Redescription and a study on the phylogenetic affinities of Kekenodon onamata is published by Corrie & Fordyce (2022).[203]
  • A diverse assemblage of fossil cetaceans, preserving fossil of taxa which are characteristic of or unique to Oligocene deposits as well as taxa more typical of early or middle Miocene deposits, is described from the Oligocene-Miocene Belgrade Formation (North Carolina, United States) by Boessenecker (2022).[204]
  • A specimen of Xiphiacetus cristatus is described from the Miocene of Austria by Lambert et al. (2022), representing the first record of this species outside the North Atlantic proper, and the first unequivocal record of eurhinodelphinids from the Paratethys; Lambert et al. also study the anatomy of the bony labyrinth of X. cristatus, and interpret it as indicating that eurhinodelphinids likely employed narrow-band high-frequency echolocation.[205]
  • Description of a new specimen of an archaic dolphin (belonging or related to the species Prosqualodon davidis) from the Miocene Gee Greensand (New Zealand), and a study on the implications of this specimen for the knowledge of the evolution of the brain of toothed whales, is published by Tanaka, Ortega & Fordyce (2022).[206]
  • A study on the anatomy and phylogenetic affinities of Notocetus vanbenedeni is published by Viglino et al. (2022).[207]
  • Reappraisal of the systematics, phylogeny and feeding behavior of Orcinus citoniensis is published by Citron et al. (2022), who confirm the assignment of this species to the genus Orcinus.[208]
  • A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[209]
  • Revision of the Miocene cetacean assemblage from the Swiss Upper Marine Molasse is published by Aguirre-Fernández, Jost & Hilfiker (2022), who report hitherto unknown kentriodontid and squalodelphinid fossils from this assemblage.[210]
  • The second specimen of Casatia thermophila, providing new information on the anatomy of this monodontid, is described from the Pliocene locality of Arcille (Italy) by Merella et al. (2022).[211]
  • Review of the fundamental morphological transformations that occurred at the origin stage of the baleen whales is published by Bisconti & Carnevale (2022).[212]
  • A study on the evolution of the feeding strategies of members of the baleen whale clade Chaeomysticeti, as inferred from rostral morphologies of extant and fossil taxa, is published by Tanaka (2022), who argues that the feeding strategy of the earliest chaeomysticetes could be more similar to lunge feeding than to skim feeding, and that balaenids and the pygmy right whale shifted to skim feeding independently.[213]
  • Bisconti et al. (2022) describe a periotic of a basal rorqual from the Miocene (Tortonian) of Italy, argued to belong to an individual was longer than all the other contemporaneous rorquals, and interpreted as indicative of the early evolution of large body size in this family.[214]
  • A study on the evolution of feeding structures of baleen whales across the teeth-to-baleen transition is published by Gatesy et al. (2022), who name a new clade Kinetomenta containing the groups Aetiocetidae and Chaeomysticeti.[215]

Carnivorans

Name Novelty Status Authors Age Type locality Country Notes Images

Adeilosmilus[216]

Gen. et comb. nov

In press

Jiangzuo, Werdelin & Sun

Miocene

 Chad

A member of Machairodontinae; a new genus for "Machairodus" kabir Peigné et al. (2005).

?Agriarctos nikolovi[217]

Sp. nov

Valid

Jiangzuo & Spassov

Miocene (Messinian)

Lozenets Formation

 Bulgaria

An ursid belonging to the subfamily Ailuropodinae and the tribe Ailuropodini.

Aragonictis[218]

Gen. et sp. nov

Valid

Valenciano et al.

Miocene

 Spain

A small-sized mustelid. The type species is A. araid.

Canis hewitti[219] Sp. nov In press Fourvel & Frerebeau Pliocene-Pleistocene  South Africa A Canina canine.

Circamustela hartmanni[220]

Sp. nov

Valid

Kargopoulos et al.

Miocene (Tortonian)

 Germany

A mustelid belonging to the subfamily Guloninae.

Enhydriodon omoensis[221]

Sp. nov

Valid

Grohé, Uno & Boisserie

Plio-Pleistocene

Shungura Formation

 Ethiopia

An otter.

Hadrokirus novotini[222]

Sp. nov

In press

Hafed et al.

Neogene

 United States
( North Carolina)

An earless seal belonging to the subfamily Monachinae.

Homiphoca murfreesi[222]

Sp. nov

In press

Hafed et al.

Neogene

 United States
( North Carolina)

An earless seal belonging to the subfamily Monachinae.

Longchuansmilus[223]

Gen. et sp. nov

Valid

Jiangzuo et al.

Late Miocene

 China

A member of Machairodontinae. The type species is L. xingyongi.

Lynx hei[224]

Sp. nov

Valid

Jianzuo et al.

Early Pleistocene

Linxia Basin

 China

A lynx.

Mogharacyon[225]

Gen. et comb. nov

Valid

Morales & Pickford

Early Miocene

 Egypt

An amphicyonid; a new genus for "Cynelos" anubisi Morlo et al. (2019).

Moralesictis[226]

Gen. et sp. nov

Valid

Valenciano & Baskin

Hemphillian

 United States
( Texas)

A mellivorine mustelid. The type species is M. intrepidus.

Namibiocyon[225]

Gen. et comb. nov

Valid

Morales & Pickford

Early Miocene

 Namibia

An amphicyonid; a new genus for "Ysengrinia" ginsburgi Morales et al. (1998).

Neoyunnanotherium[227]

Nom. nov

Valid

Deshmukh & Valenciano

Late Miocene

 China

A member of the family Mephitidae; a replacement name for Yunnanotherium Qi (2014).

Pachyphoca volkodavi[228]

Sp. nov

Valid

Tarasenko

Miocene

 Russia
( Adygea)

A cystophorine seal.

Pangurban[229]

Gen. et sp. nov

Valid

Poust, Barrett & Tomiya

Eocene

Pomerado Conglomerate

 United States
( California)

A member of the family Nimravidae. Genus includes new species P. egiae.

Panthera gombaszoegensis jinpuensis[230]

Ssp. nov

Valid

Jiangzuo et al.

Middle Pleistocene

 China

Announced in 2022; the final article version was published in 2023.

Panthera principialis[231]

Sp. nov

Hemmer

Pliocene

 Tanzania

A species of Panthera.

Panthera uncia pyrenaica[232]

Ssp. nov

Valid

Hemmer

Pleistocene (Marine Isotope Stage 14)

 France

A subspecies of the snow leopard.

Parailurus tedfordi[233]

Sp. nov

Valid

Wallace & Lyon

Pliocene (Blancan)

 United States
( Washington)

A member of the family Ailuridae. Published online in 2021, but the copyright is listed as © 2022.

Paramachaerodus yingliangi[234]

Sp. nov

Valid

Jiangzuo et al.

Late Miocene

 China

A metailurine felid.

Percrocuta xixiaensis[235]

Sp. nov

Valid

Xiong

Miocene

Zhang'embao Formation

 China

Protocyon orocualensis[236]

Sp. nov

Valid

Ruiz-Ramoni, Wang & Rincón

Late Pliocene/Early Pleistocene

 Venezuela

A Cerdocyonina canine.
Announced in 2021; the final article version was published in 2022.

Taowu[216]

Gen. et sp. nov

In press

Jiangzuo, Werdelin & Sun

Early Pleistocene

 China

A member of Machairodontinae. The type species is T. liui.

Tartarocyon[237]

Gen. et sp. nov

Valid

Solé et al.

Miocene (Serravallian)

 France

An amphicyonid. The type species is T. cazanavei.

Yoshi faie[234]

Sp. nov

Valid

Jiangzuo et al.

Late Miocene

 China

A metailurine felid.

Yoshi yongdengensis[234]

Sp. nov

Valid

Jiangzuo et al.

Late Miocene

 China

A metailurine felid.

Carnivoran research

  • A study on the fossils of carnivorans from the Miocene (Messinian) of Cava Monticino (Italy), including fossil material of Eucyon monticinensis representing one of the oldest, certain records of the genus Eucyon in the Old World and fossil material of Mellivora benfieldi representing the northernmost record of the species and the only certain record of the genus Mellivora outside of Africa, is published by Bartolini-Lucenti, Madurell-Malapeira & Rook (2022).[238]
  • Revision of the carnivoran fauna from Libakos in the Pliocene-Pleistocene Grevena–Neapolis Basin (Greece), including the first record of the mustelid Pannonictis nestii from Greece, and a study on the age of this fauna is published by Koufos & Tamvakis (2022).[239]
  • Descriptions of fossil material of carnivorans from the Early Pleistocene site of Palan-Tyukan (Azerbaijan), including, among others, some of the latest records of the raccoon dog Nyctereutes megamastoides and the badger Meles thorali, the first record of the otter Lutraeximia cf. umbra from a Transcaucasian Early Pleistocene site, two species of sabertoothed cats (Megantereon cf. cultridens and Homotherium cf. crenatidens), and fossil material of Panthera cf. gombaszoegensis representing one of the earliest records of the genus Panthera in all of Eurasia, are published by Sablin & Iltsevich (2022)[240] and Iltsevich & Sablin (2022).[241]
  • A study on the carnivoran activity in the Pleistocene site of Barranco León (Spain), focusing on tooth pits found on bones, is published by Courtenay et al. (2022), who report that, in addition to Homotherium latidens and Pachycrocuta brevirostris, other carnivorans were also active agents in the formation of the site.[242]
  • A study on the community structure and dynamics of the guilds of European large carnivorans throughout the Pleistocene is published by Konidaris (2022).[243]
  • A study on the morphology of the ossicles of carnivorans from the La Brea Tar Pits is published by Dickinson et al. (2022), who interpret their findings as indicating that large felids (Smilodon fatalis, the American lion) and canids (the dire wolf) from the La Brea Tar Pits likely had similar hearing abilities as extant large felids and canids, respectively, while the ossicles of Arctodus simus were substantially different from those of modern bears, potentially indicating differences in their hearing ranges.[244]
  • Fossil material of Amphicyon giganteus is described from a travertine above a layer dated to MN7/8 in the Karacalar Silver Travertine Quarry (Gebeceler Formation, Turkey) by van der Hoek et al. (2022), representing the youngest record of this species reported to date.[245]
  • A humerus of a member of the genus Borophagus is described from the Gray Fossil Site (Tennessee, United States) by Bōgner & Samuels (2022), representing the first occurrence of the genus in a heavily forested ecosystem.[246]
  • Description of new fossil material of members of the genus Nyctereutes from the Dafnero-3 site (Greece) and previously unpublished specimens from Varshets (Bulgaria), providing the first known evidence of co-existence of Nyctereutes tingi and Nyctereutes megamastoides in Europe, and extending the record of N. tingi in southeastern Europe until the beginning of the middle Villafranchian, is published by Tamvakis et al. (2022).[247]
  • Description of new fossil material of Xenocyon lycaonoides from the Jinyuan Cave (China), confirming the presence of this species in eastern Asia during the early Middle Pleistocene, and a study on the affinities of this species is published by Jiangzuo et al. (2022).[248]
  • Description of a robust canid dentary from the Pliocene Glenns Ferry Formation (Hagerman Fossil Beds National Monument; Idaho, United States), and a study on the affinities of this specimen and on the diversity of Pliocene canids from Hagerman, is published by Prassack & Walkup (2022).[249]
  • Description of a wolf skull from Ponte Galeria (Rome, Italy), representing the first reliable occurrence of this taxon in Europe and the largest skull of a Middle Pleistocene canid from Europe known to date, is published by Iurino et al. (2022), who evaluate the implications of this specimen for the knowledge of the turnover between Canis mosbachensis and modern wolves.[250]
  • Diedrich (2022) describes new fossil material of wolves from the Pleistocene of Europe, including a skull from the Srbsko Sluj IV Cave in the Bat Cave system (Czech Republic), interpreted as representing a new early middle Pleistocene taxon that was ancestral to warm climate grey wolves as well as Tundra and Arctic wolves, and a mid-Pleistocene skull of Canis mosbachensis/Canis lupus mosbachensis from the Gernsheim site in the Upper Rhine River Valley (Germany).[251]
  • A study on the evolutionary history of grey wolves, based on data from 72 ancient wolf genomes from Europe, Siberia and North America spanning the last 100,000 years, is published by Bergström et al. (2022), who report that none of the analysed ancient wolf genomes is a direct match for the domestic dog ancestries found by the authors, that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, but also that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, which might be caused by admixture from local wolves or by an independent domestication process.[252]
  • A study on the evolutionary history of the Japanese wolf, based on ancient DNA data from remains of Pleistocene and Holocene specimens, is published by Segawa et al. (2022).[253]
  • A study on the functional morphology of the skull of the Pleistocene badger Meles dimitrius is published by Savvidou et al. (2022).[254]
  • Fossil material of a panda possibly belonging to the species Ailurarctos lufengensis, preserving the earliest enlarged radial sesamoid (panda's false thumb) reported to date, is described from the late Miocene Shuitangba site (Zhaotong Basin; Yunnan, China) by Wang et al. (2022).[255]
  • Hu et al. (2022) describe new fossil material of Ailuropoda melanoleuca baconi from Yanjinggou (China), representing the best-preserved skull material of this subspecies reported to date, and interpret this taxon as a valid subspecies of the giant panda and the senior synonym of Ailuropoda fovealis/Ailuropoda melanoleuca fovealis.[256]
  • Fossil material of Ursus etruscus, expanding knowledge of the morphological diversity and evolution of this species, is described from the Taurida cave (Crimea) by Gimranov et al. (2022).[257]
  • A study on the skeletal morphology, affinities and likely paleoecology of small-sized cave bears (originally assigned to the taxon Ursus savini) from the Imanay Cave (Russia) is published by Gimranov et al. (2022).[258]
  • A study on the microwear of the non-occlusal surface of incisors of the small cave bear and Ural cave bear from the Pleistocene of the Middle and South Urals, and on its implications for the knowledge of the trophic specialization of these cave bears, is published by Gimranov, Zykov & Kosintsev (2022).[259]
  • Review of the knowledge of the taxonomy and phylogeny, biology, distribution, occurrence and extinction times, and interaction with humans of large and small cave bears in the Urals is published by Gimranov & Kosintsev (2022).[260]
  • A study on the upper and lower canines of cave bears from Medvezhiya Cave (Komi Republic, Russia), Kizel Cave (Perm Krai, Russia), Shiriaevo 1 Cave (Samara Oblast, Russia), Akhshtyrskaya Cave (Krasnodar Krai, Russia) and Kudaro 3 Cave (South Ossetia), evaluating the implications of these teeth for the knowledge of the ecology of cave bears from these sites, is published by Prilepskaya, Bachura & Baryshnikov (2022).[261]
  • A study on the evolutionary history and phylogeography of ancient and modern brown bears, based on data from mitochondrial genomes of four ancient (~4.5–40 thousand years old) bears from South Siberia and modern bears from South Siberia and the Russian Far East, is published by Molodtseva et al. (2022).[262]
  • Review of the historical distribution of ancient polar bear remains across the Arctic is published by Crockford (2022).[263]
  • A study on the evolutionary history of brown and polar bears, incorporating data from the genome of a Pleistocene polar bear specimen from the Svalbard Archipelago (Norway), is published by Lan et al. (2022).[264]
  • Evidence from paleogenome from an approximately 100,000-year-old polar bear from Arctic Alaska (United States), indicative of massive prehistoric, and mainly unidirectional, gene flow from polar bears into brown bears which was not visible from genomic data derived from living polar bears, is presented by Wang et al. (2022).[265]
  • A study on the diets of Arctodus simus, brown bears and American black bears from the Late Pleistocene of the Vancouver Island (Canada) is published by Kubiak et al. (2022), who interpret their findings as indicative of niche differentiation between these species.[266]
  • A study on the anatomy of the hindlimbs and locomotor abilities of Amphicynodon leptorhynchus is published by Gardin et al. (2022), who interpret their findings as indicative of A. leptorhynchus being an agile climber.[267]
  • A study aiming to determine possible patterns of morphological convergence in cranial shape between Kolponomos newportensis and sabretoothed cats is published by Modafferi et al. (2022).[268]
  • Fossil remains of a monachine seal are reported from the late Miocene–Pliocene sediments of Guafo Island (Chile) by Valenzuela-Toro & Pyenson (2022), extending the geographic range of the fossil record of seals in Chile by 1000 km and representing the southernmost occurrence of a fossil seal from the South Pacific.[269]
  • New phocine fossil material is described from the Miocene locality of Eldari I (Georgia) by Vanishvili (2022), who assigns the species "Phoca" procaspica to the genus Praepusa.[270]
  • Fossil material of members of the genus Palaeogale is described from the Oligocene John Day Formation (Oregon, United States) by Famoso & Orcutt (2022), representing the first known records of this genus from the Pacific Northwest of North America.[271]
  • A well-preserved skull of Stenoplesictis minor is described from the Oligocene Quercy Phosphorites Formation (France) by de Bonis et al. (2022), who present a reconstruction of brain endocast, stapes and bony labyrinths of this specimen.[272]
  • A mandible of the largest specimen belonging to the genus Pachycrocuta reported to date, with dental morphology similar to that of Pachycrocuta from Zhoukoudian, is described from the Middle Pleistocene loess in Luoning (Henan, China) by Jiangzuo et al. (2022).[273]
  • Review of the fossil record and a revision of the species-level taxonomy of the genus Crocuta is published by Lewis & Werdelin (2022).[274]
  • A study on the diets and ecological niches of cave hyenas from the Prolom 2 grotto (Crimea) and the Bukhtarminskaya Cave (eastern Kazakhstan) as well as Crocuta ultima ussurica from the Geographical Society Cave (Primorsky Krai, Russia), based on data from tooth microwear, is published by Rivals et al. (2022), who interpret their findings as indicative of overall similarity with the known diets of extant spotted hyenas, as well as indicative of differences between the adults exhibiting a bone crushing behavior, and the juveniles that may have included a larger proportion of meat in their diet.[275]
  • A study on the biting biomechanics of sabretoothed cats and nimravids is published by Chatar, Fischer & Tseng (2022), who interpret their findings as confirming that carnivorans with long upper canines had a better stress repartition and were adapted to bite at larger angles, but otherwise indicating that the mandibular architectures of sabretooth and non-sabretooth forms reacted similarly in a mechanical efficiency and strain energy framework, and consider this to be suggestive of the presence of a continuous rather than bipolar spectrum of hunting methods in cat-like carnivorans.[276]
  • A study on the fossil record of members of the genus Amphimachairodus in the Chinese Baode strata is published by Wang, Carranza-Castañeda & Tseng (2022), who interpret this record as evidence of anagenetic evolution of increasing size, and study the evolution of members of the genus Amphimachairodus on the basis of all Holarctic records.[277]
  • The best-preserved material of Nimravides catocopis is described by Jiangzuo, Li & Deng (2022), who argue that Nimravides was a North American endemic sabertoothed cat rather than an immigrant from Eurasia, that the Old World lineage of sabertoothed cats experienced a higher evolutionary rate of cranial traits, giving rise to a more derived genus Amphimachairodus, and that Amphimachairodus did not immediately replace Nimravides through direct competition after migrating to North America.[278]
  • Revised reconstruction of the soft tissue and life appearance of Homotherium latidens is proposed by Antón et al. (2022).[279]
  • A complete cranium of Homotherium, with morphology indicative of assignment to Homotherium crenatidens teilhardipiveteaui, is described from the Shigou locality in the Nihewan Basin (China) by Jiangzuo, Zhao & Chen (2022), who interpret this finding as indicative of a largely continuous gene flow within Eurasia during the evolution of Homotherium, and indicating that the subspecies delimitation within the genus Homotherium should be more chronological than geographical.[280]
  • Partial mandible of a felid from Taiwan (probably from the Pleistocene Chi-Ting Formation), originally interpreted as a fossil of a member of the genus Felis, is reinterpreted as a fossil of a member of the genus Homotherium by Tsai & Tseng (2022).[281]
  • A study on feeding damage from Xenosmilus hodsonae in the large mammalian fauna from the Irvingtonian paleo-sinkhole Haile 21A (Florida, United States), and on its implications for the knowledge of the carcass processing capabilities of Xenosmilus and of the sabertooth paleoecology in the Pleistocene, is published by Domínguez-Rodrigo et al. (2022).[282]
  • Description of postcranial remains of a large-bodied sabretooth felid from the Lower Pliocene site of Langebaanweg "E" Quarry (South Africa), interpreted as more similar in morphology and proportions to Machairodus aphanistus and Lokotunjailurus emageritus than to Amphimachairodus giganteus, is published by Rabe, Chinsamy & Valenciano (2022), who report pathologies in the foot and lumbar spine of the studied specimen interpreted as consistent with severe osteoarthritis, limiting limb mobility of the studied specimen and possibly making its long-term survival dependent on it being a social animal.[283]
  • New fossil material of a lynx belonging or related to the species Lynx issiodorensis is described from the Villafranchian site of La Puebla de Valverde (Spain) by Cuccu et al. (2022), who evaluate the implications of this finding for the knowledge of the European lynx fossil record.[284]
  • Description of Late Pleistocene remains of the Iberian lynx from Avenc del Marge del Moro (Garraf Massif, Catalonia, Spain) is published by Tura-Poch et al. (2022).[285]
  • Description of the fossil material of Miracinonyx trumani from the Next Door Cave, Rampart Cave and Stanton's Cave (Grand Canyon; Arizona, United States), and a study on the implications of these fossils for the knowledge of the ecology of M. trumani, is published by Hodnett et al. (2022).[286]
  • Figueirido et al. (2022) describe the anatomy of the brain of Miracinonyx trumani, report that the brain of M. trumani differed from the brain of extant cheetah, and argue that Miracinonyx might not have been as specialized as the cheetah in deploying a fast-running pursuit.[287]
  • Large felid remains assigned to the species Panthera fossilis are described from the Grotte de la Carrière in Eastern Pyrenees by Prat-Vericat et al. (2022), who evaluate the implications of these fossils for the knowledge of the paleobiology of P. fossilis.[288]
  • Two specimens of Panthera spelaea are described from the Middle and Late Pleistocene Songhua River fossil assemblages (China) by Sherani, Perng & Sherani (2022), representing the first records of this species from the Mammuthus-Coelodonta fauna from the Pleistocene assemblages of the Songhua River reported to date.[289]
  • Review of the fossil record of lions and lion-like felids from Ukraine is published by Marciszak et al. (2022), who interpret the studied fossils as confirming the gradual decrease in body size of Panthera spelaea.[290]
  • A study on the size and shape differences among lions and Pleistocene lion-like felids from Europe, Asia and North America is published by Sabol, Tomašových & Gullár (2022), who interpret their findings as indicating that Panthera fossilis and P. spelaea potentially belong to one chronospecies, while Panthera atrox differs from other lion forms and could be considered a separate taxon.[291]
  • A study on the anatomy and affinities of Panthera gombaszoegensis, based on data from a new skull from Belgium, is published by Chatar, Michaud & Fischer (2022), who interpret this felid as more closely related to the tiger than to the jaguar.[292]

Chiroptera

Name Novelty Status Authors Age Type locality Country Notes Images

Palaeochiropteryx sambuceus[293]

Sp. nov

Valid

Czaplewski et al.

Eocene (Bridgerian)

Sheep Pass Formation

 United States
( Nevada)

A member of the family Palaeochiropterygidae.

Rhinolophus macrorhinus cimmerius[294]

Ssp. nov

Valid

Lopatin

Early Pleistocene

Crimean Peninsula

A horseshoe bat.

Sonor[293]

Gen. et sp. nov

Valid

Czaplewski et al.

Eocene (Bridgerian)

Sheep Pass Formation

 United States
( Nevada)

A probable member of the family Vespertilionidae. The type species is S. handae.

Volactrix[293]

Gen. et sp. nov

Valid

Czaplewski et al.

Eocene (Bridgerian)

Sheep Pass Formation

 United States
( Nevada)

Possibly a member of the family Onychonycteridae. The type species is V. simmonsae.

Chiropteran research

  • A study on the Late Pleistocene to the Late Holocene bat fossil record along the stratigraphical sequence of El Mirador (Burgos, Spain), preserving bats belonging to the current Iberian fauna but in an association with no extant equivalent, and providing evidence of high biodiversity among the Iberian Early Holocene bat communities, is published by Galán García et al. (2022).[295]

Eulipotyphla

Name Novelty Status Authors Age Type locality Country Notes Images

Dzavui[296]

Gen. et sp. nov

Valid

Crespo & Jiménez-Hidalgo in Jiménez-Hidalgo, Guerrero-Arenas & Crespo

Oligocene (Rupelian)

 Mexico

A gymnure. The type species is D. landeri.

Ishimosorex[297]

Gen. et sp. nov

Valid

Zazhigin & Voyta

Late Miocene

Ishim Formation

 Kazakhstan

A red-toothed shrew belonging to the tribe Anourosoricini. The type species is I. ishimiensis.

Ladakhechinus[298]

Gen. et sp. nov

Journal of Asian Earth Sciences:X

Wazir et al.

Late Oligocene

Kargil Formation

 India

A hedgehog. The type species is L. iugummontis.

Magnatalpa[299]

Gen. et sp. nov

Valid

Oberg & Samuels

Pliocene

Gray Fossil Site

 United States
( Tennessee)

Probably a stem desman. The type species is M. fumamons.

Noritrimylus[104]

Gen. et comb. nov

Valid

Korth et al.

Possibly Chadronian to Arikareean

 United States
( Colorado
 Nebraska
 South Dakota)

A shrew belonging to the subfamily Heterosoricinae. The type species is "Domnina" compressa Galbreath (1953); genus also includes "Trimylus" dakotensis Repenning (1967) and "Pseudotrimylus" metaxy Korth (2020).

Ocajila macdonaldi[300]

Sp. nov

Valid

Korth

Whitneyan

 United States
( Montana)

A member of the family Erinaceidae.

Ocajila rasmusseni[300]

Sp. nov

Valid

Korth

Arikareean

 United States
( Montana)

A member of the family Erinaceidae.

Oligoryctes tenutalonidus[104]

Sp. nov

Valid

Korth et al.

Chadronian-Orellan

Chadron Formation

 United States
( Nebraska)

A member of the family Oligoryctidae.

Paranourosorex intermedius[297]

Sp. nov

Valid

Zazhigin & Voyta

Late Miocene and early Pliocene

Novaya Stanitsa Formation

 Kazakhstan
 Russia
( Omsk Oblast)

A red-toothed shrew belonging to the tribe Anourosoricini.

Parascalops grayensis[299]

Sp. nov

Valid

Oberg & Samuels

Pliocene

Gray Fossil Site

 United States
( Tennessee)

A species of Parascalops.

Plesiosorex shanqini[301]

Sp. nov

Valid

Li

Miocene

 China

A member of the family Plesiosoricidae.

Sonidolestes[302]

Gen. et sp. nov

Li et al.

Early Miocene

 China

A hedgehog. Genus includes new species S. wendusui.

Eulipotyphlean research

  • Fossil material of the erinaceid Galerix rutlandae and a talpid belonging to the subfamily Uropsilinae, representing the first known record of these families from the Miocene Siwalik exposures of India and the first record of an uropsiline from the Indian subcontinent, is described by Parmar, Norboo & Magotra (2022).[303]
  • Fossil material of Van Sung's shrew and Chodsigoa hoffmanni is described from the Pleistocene of the Tham Hai cave and Lang Trang cave (Vietnam) by Lopatin (2022), representing the first fossil records of these species and the first fossil remains of members of the genus Chodsigoa found outside China.[304]

Perissodactyla

Name Novelty Status Authors Age Type locality Country Notes Images

Equus vekuae[305]

Sp. nov

Eisenmann

Early Pleistocene

 Georgia

A species of Equus.

Ulanodon[306]

Nom. nov

Valid

Bai & Qi

Eocene

 China

A hyracodontid; a replacement name for Ulania Qi (1990).

Perissodactyl research

  • Revision of odd-toed ungulate taxa from the Eocene Lijiang Formation (China) is published by Bai (2022), who interprets Rhodopagus yunnanensis as a junior synonym of the palaeothere species Lijiangia zhangi, considers Lunania to be a palaeothere rather than a chalicothere, interprets Lophiohippus as a likely junior synonym of Lunania, and transfers Teleolophus xiangshanensis to the deperetellid genus Diplolophodon.[307]
  • A study on the evolutionary variation of shape in hindlimb long bones of members of Rhinocerotoidea, and on its relationship with mass, size and gracility, is published by Mallet et al. (2022).[308]
  • A study on the paleoecology of late Miocene rhinocerotids the Balkan-Iranian zoogeographic province, as inferred from tooth microwear, is published by Hullot et al. (2022),[309]
  • A study on the body mass of giant rhinos and its evolution, based on data from a skeleton of a member of the paracerathere genus Dzungariotherium from the Qingshuiying Formation (China), is published by Li, Jiangzuo & Deng (2022).[310]
  • Redescription of the holotype and a study on the affinities of Parelasmotherium schansiense is published by Kampouridis et al. (2022).[311]
  • Description of new fossil material of Pliorhinus megarhinus from the early Pliocene of the Vera Basin (Spain) and a study on the biochronology and biogeography of the Pliocene rhinocerotines from Spain is published by Pandolfi et al. (2022).[312]
  • Description of the fossil material of a woolly rhinoceros from the Middle Pleistocene Les Rameaux locality (France) is published by Uzunidis, Antoine & Brugal (2022), who refer this material to the subspecies Coelodonta antiquitatis praecursor, interpret their findings as supporting the identification of C. a. praecursor and C. a. antiquitatis as distinct and valid subspecies, refute the taxonomic assignment of the rhinocerotid skull from Bad Frankenhausen skull to the species Coelodonta tologoijensis, an propose the first comprehensive phylogeny for Coelodonta.[313]
  • Review of the Eocene fossil record of equoids from the Iberian Peninsula is published by Badiola et al. (2022).[314]
  • New fossil material of palaeotheriids, including the first known records of upper teeth of Franzenium durense and first known mandible and lower teeth of Cantabrotherium, is described from the Eocene (Bartonian) of Mazaterón (Soria, Almazán Basin, Spain) by Perales-Gogenola et al. (2022).[315]
  • Description of new fossil material of members of the genus Hippotherium from the Miocene of the Linxia Basin (China), providing new information on the skeletal anatomy of members of this genus, and a study on their locomotor capabilities and adaptations to their environment is published by Sun et al. (2022).[316]
  • A study on the systematic affinities and dietary behavior of Turolian hipparions from the Cioburciu site (Balta Formation; Moldova) is published by Răţoi et al. (2022).[317]
  • A study on the relationship between size and diet in hipparionins from Vallesian and Turolian circum-Mediterranean localities is published by Orlandi-Oliveras et al. (2022).[318]
  • Review of the latest occurrences of the hipparions in the Old World, and a study on the taxonomy of the last hipparions is published by van der Made et al. (2022).[319]
  • Fossil material of six taxa of equids is described from the Xinyaozi Ravine (Shanxi, China) by Dong et al. (2022), who report the presence of two hipparionine taxa interpreted as Neogene relics in an Early Pleistocene fauna.[320]
  • Revision of the fossil material of equids from the Khaprovskii Faunal Complex (Russia) is published by Eisenmann (2022).[321]
  • A study on metapodials of Pleistocene horses from eastern Beringia is published by Landry, Roloson & Fraser (2022), who report evidence of plasticity in metapodial morphology, indicating that metapodials do not reliably differentiate distinct species of Beringian horses.[322]
  • Revision of the taxonomy of equids from the late Middle Pleistocene to Early Holocene of Apulia (Italy) and a study on their biochronology is published by Mecozzi & Strani (2022).[323]
  • Revision of the fossil material of Equus stehlini from the Villafranchian of the Upper Valdarno Basin (Tuscany, Italy) is published by Cirilli (2022).[324]
  • A study on the phylogenetic affinities of members of the genus Equus belonging to the subgenus Sussemionus, timing of their divergence relative to other non-caballine equids, and their demographic trajectory until their extinction, based on data from genomes and radiocarbon dating of specimens of Equus ovodovi from northern China, is published by Cai et al. (2022), who interpret their findings as indicating that the Sussemionus lineage survived until ~3,500 years ago.[325]
  • Systematic revision of tridactyl and monodactyl horses from the Pliocene and Pleistocene, and a study on their evolution and associated paleoenvironments, is published by Cirilli et al. (2022).[326]

Other laurasiatherians

Name Novelty Status Authors Age Type locality Country Notes Images

Charruatoxodon[327]

Gen. et sp. nov

Valid

Ferrero et al.

Late Pliocene–early Pleistocene

 Uruguay

A toxodontid notoungulate. The type species is C. uruguayensis.

Diegoaelurus[328] Gen. et sp. nov In press Zack, Poust, & Wagner Mid Eocene Santiago Formation  United States
( California)
A machaeroidine oxyaenid. The type species is D. vanvalkenburghae.

Kyraodus[329]

Gen. et sp. nov

Valid

Zimicz et al.

Eocene (Itaboraian)

Lumbrera Formation

 Argentina

A South American native ungulate, possibly a relative of mioclaenids, litopterns, didolodontids and phenacodontids. The type species is K. churcalensis.

Miscellaneous laurasiatherian research

  • A study on footprints from the Miocene Vinchina Formation (Argentina) attributed to early toxodontids and macraucheniids is published by Vera & Krapovickas (2022), who name new ichnotaxa Macrauchenichnus troyana and Llastaya yesera, and interpret the facies of the studied footprint assemblage as indicating that the trackmakers inhabited mixed grassland-woodland ecosystems developed under warm and seasonal climates.[330]
  • A study on the fossil record of litopterns from the Cerro Azul Formation in localities of La Pampa and Buenos Aires provinces (Argentina) is published by Schmidt et al. (2022), who report the presence of eight taxa of Macraucheniidae and six of Proterotheriidae, interpreted as showing affinity with the assemblage from the Late Miocene levels of the Lower Member of the Ituzaingó Formation in Entre Ríos Province of Argentina.[331]
  • A study on the anatomy and paleoecology of Notostylops murinus, based on data from a nearly complete specimen, is published by Vera, Medina-González & Moreno (2022), who interpret their findings as indicating that early-diverging notoungulates Notostylops and Notopithecus had different locomotor capabilities, which were likely associated with early niche diversifications.[332]
  • New fossil material of Oligocene typotherian notoungulates is described from the Quebrada Fiera locality (Argentina) by Hernández Del Pino, Seoane & Cerdeño (2022), providing new information on the anatomy of "Prohegetotherium" schiaffinoi and completing known ontogenetic sequence of the species Archaeohyrax suniensis.[333]
  • Fragment of a mandible of a notoungulate belonging to the group Interatheriinae is described from the Messinian to Zanclean Tunuyán Formation (Argentina) by Vera & Romano (2022), representing the first record of an interatheriine from this formation and the youngest record of this group reported to date.[334]
  • Fernández-Monescillo et al. (2022) identify Pseudotypotherium pulchrum Ameghino (1904) as the type species of the genus Pseudotypotherium.[335]
  • Revision of the Early-Middle Pleistocene mesotheriine notoungulates is published by Fernández-Monescillo et al. (2022), who interpret the variation among the studied material as consistent with intraspecific and ontogenetic variation in a single species, recognised as Mesotherium cristatum.[336]
  • A study on the morphological tooth variation in Tremacyllus and on its systematic significance is published by Armella et al. (2022), who recognize Tremacyllus incipiens as a valid taxon.[337]
  • A study on carbon and oxygen isotopic values of tooth enamel of Toxodon platensis from two localities in the Brazilian Intertropical Region is published by Gomes et al. (2022) who interpret the studied samples as representing the record of at least three years under different climate regimes, and indicating that the feeding behaviour of the studied toxodonts was not significantly influenced by different climatic conditions.[338]
  • Matsui, Valenzuela-Toro & Pyenson (2022) describe a molar of a desmostylian belonging or related to the species Neoparadoxia cecilialina, originally collected in 1913 from the Miocene "Topanga" Formation near Corona (Riverside County, California, United States) and thus representing the historically oldest paleoparadoxiid specimen, and providing new information on the morphological variation in teeth of paleoparadoxiids.[339]
  • A study on the postcranial anatomy and likely locomotion of Patriofelis ulta, based on data from two partial skeletons, is published by Kort et al. (2022).[340]
  • Flink & Werdelin (2022) reconstruct digital endocasts of Quercygale angustidens and Gustafsonia cognita, and evaluate the implications of their anatomy for the knowledge of the evolution of the brain at the origin of Carnivora.[341]

Xenarthrans

Cingulata

Name Novelty Status Authors Age Type locality Country Notes Images

Kelenkura[342]

Gen. et sp. nov

Valid

Barasoain et al.

Late Miocene

 Argentina

A glyptodont. The type species is K. castroi.

Cingulatan research

  • Fossil remains of a juvenile pampathere belonging to the genus Holmesina are described from the Gruta do Urso cave (Brazil) by Avilla et al. (2022), providing new information on the anatomy of pampatheres at the early stages of their life.[343]
  • A study investigating the rates of morphological evolution of the skulls of the glyptodonts is published by Machado, Marroig & Hubbe (2022).[344]
  • Description of the most complete skull of Eleutherocercus antiquus from the Pliocene Monte Hermoso Formation, as well as the first description of the carapace of E. solidus from the late Miocene-Pliocene from Catamarca Province (Argentina), and a study on the phylogenetic relationships of doedicurine glyptodonts is published by Nuñez-Blasco et al. (2022).[345]
  • Description of new fossil material of Utaetus buccatus from the Eocene Guabirotuba Formation (Brazil), expanding known geographic distribution of this species and representing the first record semi-movable osteoderms in this species reported to date, is published by Sedor et al. (2022).[346]

Pilosa

Name Novelty Status Authors Age Type locality Country Notes Images

Mcdonaldocnus[347]

Gen. et comb. nov

Valid

Gaudin et al.

Friasian to Montehermosan

 Argentina
 Bolivia

A member of the family Nothrotheriidae. The type species is "Xyophorus" bondesioi Scillato-Yané (1979).

Pilosan research

  • A study on the phylogenetic relationships and the evolutionary history of sloths is published by Casali et al. (2022).[348]
  • A study on mandibles of extant and extinct sloths, aiming to determine stress patterns during the action of jaw-closing muscles and evaluating their implications for the knowledge of the feeding habits of extinct sloths, is published by Bomfim Melki, de Souza Barbosa & Paglarelli Bergqvist (2022).[349]
  • Description of the skull and jaw anatomy of a juvenile specimen of Acratocnus ye from the Holocene of Haiti, and a study on the ontogenetic changes in the skull of this sloth, is published by Gaudin & Scaife (2022).[350]
  • A study aiming to determine the diet of nine giant ground sloth species from the Brazilian Intertropical Region is published by Dantas & Santos (2022).[351]
  • Boscaini et al. (2022) describe new fossil material of Glossotherium chapadmalense from the Chapadmalal Formation (Argentina), providing information on the anatomy of this sloth, and confirm the assignment of this Pliocene species to the genus Glossotherium.[352]
  • Fossil material of Thalassocnus is reported from the Miocene–Pliocene Tafna Formation by Quiñones et al. (2022), representing the first record of this genus from Argentina, and extending its range from coastal environments to more terrestrial ones.[353]
  • A study on the pathological modifications on three articulated vertebrae of a specimen of Eremotherium laurillardi from the Toca das Onças cave (Brazil), and on their implications for the knowledge of the likely cause of death of the animal and on the incorporation mode of skeletal remains into the cave in general, is published by Barbosa et al. (2022).[354]
  • A study on an adult, a subadult and an infant specimen of Megalonyx jeffersonii from the Tarkio site (Iowa, United States) is published by Semken et al. (2022), who consider it most likely that the studied individuals represent a social unit (probably a mother and two offspring, with parental care in Megalonyx potentially extending beyond weaning of an older sibling) and died contemporaneously, and attempt to determine average lifespan, gestation time, the interbirth interval and the timing of sexual maturation in Megalonyx.[355]

General xenarthran research

  • New mylodontine sloth and glyptodont fossil material, possibly representing new taxa, is described from the Miocene (Tortonian) Letrero Formation (Ecuador) by Román-Carrión et al. (2022), who note the presence of morphological differences between xenarthrans from this formation and other Miocene xenarthran specimens, possibly indicative of isolation of xenarthrans from the Letrero Formation.[356]

Other eutherians

Name Novelty Status Authors Age Type locality Country Notes Images
Cokotherium[357] Gen. et sp. nov Wang et al. Early Cretaceous Jiufotang Formation  China A basal eutherian. The type species is C. jiufotangensis.
Indoclemensia[358] Gen. et sp. nov In press Mantilla et al. Paleocene  India An indeterminate eutherian. Includes the type species I. naskalensis and I. magnus.

Namibiodon[359]

Gen. et sp. nov

Valid

Goin, Crespo & Pickford

Eocene (Ypresian-Lutetian)

 Namibia

A member of the family Adapisoriculidae. The type species is N. australis.

Stenoleptictis[360]

Gen. et comb. nov

Valid

Korth

Eocene

 United States
( Montana)

A member of Leptictida. The type species is "Ictops" thomsoni Matthew (1903).

Miscellaneous eutherian research

  • A study on the life history of Pantolambda bathmodon, inferred from bone histology and geochemistry, is published by Funston et al. (2022), who interpret their findings as indicative of an approximately 7-months-long gestation, rapid dental development and an approximately 30–to-75-days-long suckling interval, and infer that, unlike non-placental mammals and known Mesozoic precursors, P. bathmodon was highly precocial, reproducing like a placental.[361]
  • A study on the teeth eruption sequence, the sequence of cusp mineralisation and the cranial growth of Alcidedorbignya inopinata, as well as on the mortality profile of the assemblage of members of this species from Tiupampa (Bolivia), is published by de Muizon & Billet (2022).[362]
  • A study on the age of fossil material, anatomy and phylogenetic relationships of Propyrotherium saxeum, based on data from the most complete specimen found to date, is published by Vera et al. (2022).[363]
  • A study on the affinities of extinct South American native ungulates, reassessing the study of Avilla & Mothé (2021) that recovered some of these ungulates were relatives of hyracoids,[364] is published by Kramarz & Macphee (2022), who recover all South American native ungulates as nested within Boreoeutheria.[365]

Metatherians

Name Novelty Status Authors Age Type locality Country Notes Images

Gumardee keari[366]

Sp. nov

Valid

Travouillon et al.

Miocene

 Australia

A member of Macropodiformes.

Gumardee webbi[366]

Sp. nov

Valid

Travouillon et al.

Miocene

 Australia

A member of Macropodiformes.

Morotodon[367]

Gen. et sp. nov

Valid

Crespo, Goin & Pickford

Miocene (Burdigalian)

 Uganda

Possibly member of the family Herpetotheriidae. The type species is M. aenigmaticus.

Nombe[368]

Gen. et comb. nov

Valid

Kerr & Prideaux

Late Pleistocene

 Papua New Guinea

A member of the family Macropodidae belonging to the subfamily Macropodinae. The type species is "Protemnodon" nombe Flannery et al. (1983).

Pitheculites ipururensis[369]

Sp. nov

In press

Stutz et al.

Miocene (Laventan)

Ipururo Formation

 Peru

A member of Paucituberculata.

Metatherian research

  • Description of a partial skull of Incadelphys antiquus from the Paleocene Santa Lucía Formation (Bolivia) and a study on the phylogenetic affinities of this mammal is published by de Muizon & Ladevèze (2022), who name a new metatherian superfamily Pucadelphyoidea, including the family Pucadelphyidae and likely also Incadelphys, Aenigmadelphys, Marmosopsis and Szalinia.[370]
  • A study aiming to determine whether it is possible to identify the position of isolated sparassodont teeth using linear discriminant analysis is published by Engelman & Croft (2022).[371]
  • Description of new fossil material of Callistoe vincei from the Eocene Lower Lumbrera Formation (Argentina) is published by Babot et al. (2022), showing unexpected retention of plesiomorphic traits in the lower molars of this derived sparassodont species, and supports dietary inferences related to hypercarnivory in Callistoe.[372]
  • A study on the evolution and likely causes of extinction of sparassodonts is published by Tarquini, Ladevèze & Prevosti (2022).[373]
  • A study on the origination and extinction rates of sparassodonts, aiming to determine the cause of their extinction, is published by Pino et al. (2022).[374]
  • A study on the phylogenetic relationships of extant and fossil marsupials, based on morphological data consisting of craniodental characters of extant and fossil marsupials and on molecular data, is published by Beck, Voss & Jansa (2022).[375]
  • A study on the age of the fossil material of large-bodied marsupials from the Nombe rockshelter (Papua New Guinea) is published by Prideaux et al. (2022), who interpret their findings as indicating that Hulitherium tomasettii inhabited the upper montane forests around Nombe 55,000 years ago, and that Protemnodon tumbuna and a second large, now-extinct kangaroo (possibly Nombe nombe) persisted until at least 27–22,000 years ago, coexisting with humans for at least 30,000 years.[376]
  • A study on resistances of pedal bones of sthenurine and macropodine kangaroos to bending and cortical bone distribution, and on their implications for the knowledge of possible differences in locomotion of these kangaroos, is published by Wagstaffe et al. (2022).[377]
  • Richards et al. (2022) attempt to determine the ecology of palorchestids from their humeral and femoral shape, and argue that palorchestids used their forelimbs in a specialised manner that has no direct equivalence either with their extinct relatives or among extant mammals.[378]
  • New fossil material of Ramsayia magna, representing the most complete cranial remains attributable to a member of the genus Ramsayia reported to date, is described from the Lower Johansons Cave (Queensland, Australia) by Louys et al. (2022), who also study the phylogenetic affinities of Ramsayia, recovering it as closely related to Phascolonus and Sedophascolomys, and interpreting this result as indicative of a single origin of gigantism in wombats.[379]

Monotremes

Name Novelty Status Authors Age Type locality Country Notes Images

Murrayglossus[380]

Gen. et comb. nov

Valid

Flannery et al.

Pleistocene

 Australia

An echidna. The type species is "Zaglossus" hacketti Glauert (1914).

Other mammals

Name Novelty Status Authors Age Type locality Country Notes Images

Amazighodon[381]

Gen. et sp. nov

Valid

Lasseron et al.

Jurassic–Cretaceous transition

Ksar Metlili Formation

 Morocco

A member of the family Donodontidae. The type species is A. orbis.

Anoualestes[381]

Gen. et sp. nov

Valid

Lasseron et al.

Jurassic–Cretaceous transition

Ksar Metlili Formation

 Morocco

A member of the family Donodontidae. The type species is A. incidens.

Beckumia[382] Gen. et sp. nov Valid Martin et al. Early Cretaceous (Barremian-Aptian)  Germany A member of Dryolestidae. The type species is B. sinemeckelia.

Butlerodon[383]

Gen. et sp. nov

Valid

Mao et al.

Middle Jurassic

White Limestone Formation

 United Kingdom

A member of the family Kermackodontidae. Genus includes new species B. quadratus.

Cifellitherium[382] Gen. et sp. nov Valid Martin et al. Early Cretaceous (Barremian-Aptian)  Germany A spalacotheriid symmetrodont. The type species is C. suderlandicum.

Donodon minor[381]

Sp. nov

Valid

Lasseron et al.

Jurassic–Cretaceous transition

Ksar Metlili Formation

 Morocco

A member of the family Donodontidae.

Erythrobaatar[384]

Gen. et sp. nov

Valid

Jin et al.

Late Cretaceous (Maastrichtian)

Hekou Formation

 China

A multituberculate belonging to the group Taeniolabidoidea. The type species is E. ganensis.

Minutolestes[382] Gen. et sp. nov Valid Martin et al. Early Cretaceous (Barremian-Aptian)  Germany A member of Dryolestidae. The type species is M. submersus.

Stylodens[381]

Gen. et sp. nov

Valid

Lasseron et al.

Jurassic–Cretaceous transition

Ksar Metlili Formation

 Morocco

A member of the family Donodontidae. The type species is S. amerrukensis.

Woodeatonia[383]

Gen. et sp. nov

Valid

Mao et al.

Middle Jurassic

White Limestone Formation

 United Kingdom

An allotherian of uncertain affinities. Genus includes new species W. parva.

Other mammalian research

  • A mammalian petrosal is described from the Lower Cretaceous (BerriasianBarremian) Batylykh Formation at Teete locality (Sakha, Russia) by Schultz et al. (2022), who tentatively interpret this petrosal as likely to be of eutriconodontan origin.[385]
  • Weaver et al. (2022) present evidence indicating that proportions of different bone tissue microstructures in the femoral cortices of small extant marsupials and placentals correlate with length of lactation period, study the bone histology of Late Cretaceous and Paleocene multituberculates, and argue that multituberculates likely had a similar reproductive strategy to placentals, with prolonged gestation and abbreviated lactation periods.[386]
  • Second specimen of Corriebaatar marywaltersae, providing new information on the anatomy of this species and confirming its multituberculate affinities, is described from the Early Cretaceous Flat Rocks fossil site (Eumeralla Formation, Australia) by Rich et al. (2022).[387]
  • Description of new fossil material of Barbatodon oardaensis from Romania is published by Solomon et al. (2022).[388]
  • Review of the fossil record of kogaionids from Transylvania (Romania) is published Csiki-Sava et al. (2022), who report four new occurrences from the Hațeg Basin, and reassess the chronostratigraphical and geographical distribution of kogaionids and their evolutionary patterns.[389]
  • Description of a new specimen of Lactodens sheni from the Lower Cretaceous Jiufotang Formation (China), and a study comparing the morphology of the mandible and teeth of this species and Origolestes lii, is published by Mao, Liu & Meng (2022).[390]
  • A study on the mastication of Peligrotherium tropicalis is published by Harper, Adkins & Rougier (2022).[391]
  • Review of the fossil record of the Mesozoic tribosphenic mammals from the Southern Hemisphere is published by Flannery et al. (2022), who argue that Tribosphenida evolved in the Southern Hemisphere in the Early Jurassic, and name a new family Bishopidae including Bishops whitmorei from the "Wonthaggi Formation" and related unnamed mammals from the Eumeralla Formation (Australia) and Mata Amarilla Formation (Argentina), argued to form a sister group to therians.[392]

General research

  • A study on the phylogenetic relationships of extant and fossil mammals, including previously untested fossils from the Cretaceous-Paleogene transition, is published by Velazco et al. (2022), who recover a new eutherian sister group to Placentalia, and recover Deltatheridium as a marsupial, extending the minimum age of Marsupialia before the Cretaceous-Paleogene boundary.[393]
  • A study on the evolution of the brain size relative to the body size in placental mammals after the Cretaceous–Paleogene extinction event is published by Bertrand et al. (2022), who interpret their findings as indicating that during the Paleocene the majority of branches of placentals exhibited faster rates of body mass increase than brain volume increase, and that relative brain size in crown orders increased in the Eocene.[394]
  • A study on patterns and possible drivers of the evolution of placental skulls throughout the Cenozoic is published by Goswami et al. (2022), who interpret their findings as indicative of an overall long-term decline in the rate of evolutionary change, punctuated by bursts of innovation that decreased in amplitude over the past 66 million years.[395]
  • A study on the evolution of terrestrial carnivorous mammal diversity in Europe during the Paleogene is published by Solé et al. (2022).[396]
  • New fossil material of Lagopsis penai and a member of the genus Cainotherium belonging or related to the species C. huerzeleri is described from the Miocene Ribesalbes-Alcora Basin (Spain) by Crespo et al. (2022), who compare the relative abundance of Miocene cainotheriids and lagomorphs in the area, and discuss possible direct interaction between members of both groups.[397]
  • A study on the diet and habitat of herbivorous mammals from the middle Miocene Maboko Formation (Kenya), inferred from stable carbon and oxygen isotope data from herbivore enamel, is published by Arney et al. (2022).[398]
  • Review of the mammalian dispersals from the Old World to the New World at the end of the Miocene is published by Jiangzuo & Wang (2022), who interpret their findings as suggestive of three phases of dispersals, with different environmental preferences of mammals from every phase, interpreted as reflecting the gradually increasing humidification in northeastern Asia at the end of the Miocene.[399]
  • A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[400]
  • New marine mammal assemblage, including the youngest pre-Pleistocene earless seal record in South America, is described from the Pliocene Horcón Formation (Chile) by Benites-Palomino et al. (2022).[401]
  • A study aiming to determine whether the ungulate community associated with Australopithecus afarensis at the Pliocene site of Laetoli (Tanzania) shares similarities with extant communities, and evaluating the implications of this ungulate community for the knowledge of the paleoecology of A. afarensis, is published by Fillion, Harrison & Kwekason (2022).[402]
  • Systematic description of the Early Pleistocene large mammal fauna from the Maka'amitalu basin (lower Awash Valley, Ethiopia) is published by Rowan et al. (2022).[403]
  • Description of the fossil material of bovids from the Cooper's D site (South Africa), and a study on the implications of these fossils for paleoenvironmental reconstructions and for the knowledge of habitat preferences of Paranthropus robustus and early members of the genus Homo, is published by Hanon et al. (2022).[404]
  • Review of the small mammal fossils from the Dmanisi site (Georgia) is published by Agustí et al. (2022), who interpret the small mammal assemblage from this site as composed mainly by Western or Central Asian taxa with poor representation of European elements, and indicating that the habitat occupied by the hominids of Dmanisi was characterized by the prevalence of arid conditions.[405]
  • A study on the equid and suid fossil material from the Early Pleistocene site of Palan-Tyukan (Azerbaijan), and on the implications of these fossils for paleoenvironmental reconstructions, is published by Iltsevich & Sablin (2022).[406]
  • A study on the foraging ecology of mammals, including early Gigantopithecus blacki, from the Early Pleistocene of the Liucheng Gigantopithecus Cave (Guangxi, China), as indicated by calcium isotope data, is published by Hu et al. (2022).[407]
  • Revision of the Middle Pleistocene mammalian fauna from the Oumm Qatafa Cave in Palestine, and a study on the implications of this fauna for paleoenvironmental reconstructions, is published by Marom et al. (2022).[408]
  • A study on the abundance of megafauna from Eifel (Germany) during the last 60,000 years is published by Sirocko et al. (2022), who interpret their findings as indicating that the abundance of the studied megafauna was not affected by the presence of humans or by periods of active volcanism, and that the main cause of the decrease and eventual disappearance of megafauna from Eifel was the development of woodlands.[409]
  • A study on the fossil material of reindeers and rodents from the Jankovich Cave and Rejtek I Rock Shelter and on the fossil material of woolly mammoths from the Carpathian Basin (Hungary) is published by Magyari et al. (2022), who evaluate the hypothesis that rapid climate change during the last glacial termination was briefly optimal for grazing megafauna, but these brief optima were followed by rapid regional extinctions, and attempt to determine the order of faunistic and vegetation biome changes in East-Central Europe and its casual linkage.[410]
  • A study on the homogenization of North American mammalian assemblages throughout the past 30,000 years is published by Fraser et al. (2022), who interpret their findings as indicating that this homogenization commenced between 15,000 and 10,000 years before present for mammals larger than 1 kg and 10,000–5,000 years before present for all mammals.[411]
  • A study on the impact of the end-Pleistocene megafauna extinction on the mammal community from the Edwards Plateau (Texas, United States) is published by Smith et al. (2022), who present evidence indicative of a significant reorganization of the community and a loss of ecological complexity.[412]
  • A study aiming to determine whether brain size was a significant correlate of probability of extinction in Late Quaternary mammals is published by Dembitzer et al. (2022).[413]
  • A study aiming to determine whether some places, times and types of environment gave rise to abnormal numbers of new species of mammals, based on data from Late Cenozoic fossil record of mammals in Europe, is published by Toivonen, Fortelius & Žliobaitė (2022).[414]
  • A study on the individual dietary preferences of herbivorous mammals from the Miocene to the present, aiming to determine whether herbivorous generalist species were composed of generalist or specialist individuals, is published by DeSantis et al. (2022).[415]
  • Gibert et al. (2022) present a spatio-temporal framework that can be used to examine spatial dynamics of Neogene and Pleistocene Old World mammalian communities.[416]
  • A study on changes of the regional diversity of Asian mammals through time is published by Feijó et al. (2022), who interpret their findings as indicating that southern Asia was the main cradle of Asia's mammal diversity, that mountain biodiversity hotspots in the Himalayas and Hengduan Mountains acted mainly as accumulation centers rather than as centers of diversification, and that the diversification bursts and biotic turnovers of Asian mammals were temporally associated with tectonic events and drastic reorganization of climate during the Cenozoic.[417]
  • A study on changes to terrestrial mammal food webs over the past ~130,000 years is published by Fricke et al. (2022), who present evidence of a 53% decline in food web links globally, caused in part by extinctions and in part by range losses for extant species.[418]

References

  1. ^ Wang, S.-Q.; Li, C.-X. (2022). "Attributing "Gomphotherium shensiense" to Platybelodon tongxinensis, and a new species of Platybelodon from the latest Middle Miocene". Vertebrata PalAsiatica. 60 (2): 117–133. doi:10.19615/j.cnki.2096-9899.220402.
  2. ^ Sanders, W. J. (2022). "Proboscidea from the Baynunah Formation". In F. Bibi; B. Kraatz; M. J. Beech; A. Hill (eds.). Sands of Time. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 141–177. doi:10.1007/978-3-030-83883-6_10. ISBN 978-3-030-83882-9.
  3. ^ Pardi, M. I.; DeSantis, L. R. G. (2022). "Interpreting spatially explicit variation in dietary proxies through species distribution modeling reveals foraging preferences of mammoth (Mammuthus) and American mastodon (Mammut americanum)". Frontiers in Ecology and Evolution. 10. 1064299. doi:10.3389/fevo.2022.1064299.
  4. ^ v. Koenigswald, W.; Březina, J.; Werneburg, R.; Göhlich, U. B. (2022). "A partial skeleton of "Mammut" borsoni (Proboscidea, Mammalia) from the Pliocene of Kaltensundheim (Germany)". Palaeontologia Electronica. 25 (1): Article number 25.1.a10. doi:10.26879/1188.
  5. ^ Miller, J. H.; Fisher, D. C.; Crowley, B. E.; Secord, R.; Konomi, B. A. (2022). "Male mastodon landscape use changed with maturation (late Pleistocene, North America)". Proceedings of the National Academy of Sciences of the United States of America. 119 (25): e2118329119. Bibcode:2022PNAS..11918329M. doi:10.1073/pnas.2118329119. PMC 9231495. PMID 35696566.
  6. ^ Lopes, R. P.; Pereira, J. C.; Sial, A. N.; Dillenburg, S. R. (2023). "Isotopic evidence for a diet shift in a Pleistocene sub-adult mastodon from the Brazilian Pampa". Historical Biology: An International Journal of Paleobiology. 35 (3): 388–402. Bibcode:2023HBio...35..388L. doi:10.1080/08912963.2022.2043293. S2CID 247272150.
  7. ^ Parray, K. A.; Jukar, A. M.; Paul, A. Q.; Ahmad, I.; Patnaik, R. (2022). "A gomphothere (Mammalia, Proboscidea) from the Quaternary of the Kashmir Valley, India". Papers in Palaeontology. 8 (2): e1427. Bibcode:2022PPal....8E1427P. doi:10.1002/spp2.1427. S2CID 247653516.
  8. ^ Zorro-Luján, C. M.; Noè, L. F.; Gómez-Pérez, M.; Grouard, S.; Chaparro, A.; Torres, S. (2022). "Vertebral lesions in Notiomastodon platensis, Gomphotheriidae, from Anolaima, Colombia". Quaternary Research. 112: 78–92. doi:10.1017/qua.2022.49. S2CID 253148806.
  9. ^ Mothé, D.; Jaramillo, C.; Krigsfeld Shuster, G.; Oikawa, N.; Escobar-Florez, S. (2022). "Ain't no mountain high enough? New records of Notiomastodon platensis (Mammalia, Proboscidea) from Colombia and the Quaternary dry corridor of the Cauca valley". Historical Biology: An International Journal of Paleobiology. 36 (2): 1–12. doi:10.1080/08912963.2022.2155955. S2CID 255092592.
  10. ^ Alberdi, M. T.; Prado, J. L. (2022). "Diversity of the fossil gomphotheres from South America". Historical Biology: An International Journal of Paleobiology. 34 (8): 1685–1691. Bibcode:2022HBio...34.1685A. doi:10.1080/08912963.2022.2067754. hdl:10261/271195. S2CID 250533802.
  11. ^ Semprebon, G. M.; Pirlo, J.; Dudek, J. (2022). "Dietary Habits and Tusk Usage of Shovel-Tusked Gomphotheres from Florida: Evidence from Stereoscopic Wear of Molars and Upper and Lower Tusks". Biology. 11 (12). 1748. doi:10.3390/biology11121748. PMC 9774678. PMID 36552258.
  12. ^ Scarborough, M. E. (2022). "Extreme Body Size Variation in Pleistocene Dwarf Elephants from the Siculo-Maltese Palaeoarchipelago: Disentangling the Causes in Time and Space". Quaternary. 5 (1): Article 17. doi:10.3390/quat5010017. hdl:11427/36354.
  13. ^ Lister, A. M. (2022). "Mammoth evolution in the late Middle Pleistocene: The Mammuthus trogontherii-primigenius transition in Europe". Quaternary Science Reviews. 294. 107693. Bibcode:2022QSRv..29407693L. doi:10.1016/j.quascirev.2022.107693. S2CID 252264887.
  14. ^ van der Valk, T.; Dehasque, M.; Chacón-Duque, J. C.; Oskolkov, N.; Vartanyan, S.; Heintzman, P. D.; Pečnerová, P.; Díez-del-Molino, D.; Dalén, L. (2022). "Evolutionary consequences of genomic deletions and insertions in the woolly mammoth genome". iScience. 25 (8): Article 104826. Bibcode:2022iSci...25j4826V. doi:10.1016/j.isci.2022.104826. PMC 9382235. PMID 35992080. S2CID 251302577.
  15. ^ Zouhri, S.; Zalmout, I. S.; Gingerich, P. D. (2022). "New protosirenid (Mammalia, Sirenia) in the late Eocene sea cow assemblage of southwestern Morocco". Journal of African Earth Sciences. 189: Article 104516. Bibcode:2022JAfES.18904516Z. doi:10.1016/j.jafrearsci.2022.104516. S2CID 247421975.
  16. ^ Heritage, S.; Seiffert, E. R. (2022). "Total evidence time-scaled phylogenetic and biogeographic models for the evolution of sea cows (Sirenia, Afrotheria)". PeerJ. 10: e13886. doi:10.7717/peerj.13886. PMC 9420408. PMID 36042864.
  17. ^ Díaz-Berenguer, E.; Moreno-Azanza, M.; Badiola, A.; Canudo, J. I. (2022). "Neurocranial bones are key to untangling the sea cow evolutionary tree: osteology of the skull of Sobrarbesiren cardieli (Mammalia: Pan-Sirenia)". Zoological Journal of the Linnean Society. 196 (4): 1671–1703. doi:10.1093/zoolinnean/zlac021.
  18. ^ Arenson, Julia L.; Harrison, Terry; Sargis, Eric J.; Taboada, Hannah G.; Gilbert, Christopher C. (2022-02-01). "A new species of fossil guenon (Cercopithecini, Cercopithecidae) from the Early Pleistocene Lower Ngaloba Beds, Laetoli, Tanzania". Journal of Human Evolution. 163. Article 103136. Bibcode:2022JHumE.16303136A. doi:10.1016/j.jhevol.2021.103136. ISSN 0047-2484. PMID 35033736. S2CID 245952247.
  19. ^ Chaimanee, Y.; Lazzari, V.; Yamee, C.; Suraprasit, K.; Rugbumrung, M.; Chaivanich, K.; Jaeger, J.-J. (2022). "New materials of Khoratpithecus, a late Miocene hominoid from Nakhon Ratchasima Province, Northeastern Thailand, confirm its pongine affinities" (PDF). Palaeontographica Abteilung A. 323 (4–6): 147–186. Bibcode:2022PalAA.323..147C. doi:10.1127/pala/2022/0129. S2CID 251365201.
  20. ^ Gommery, D.; Senut, B.; Pickford, M.; Nishimura, T. D.; Kipkech, J. (2022). "The Late Miocene colobine monkeys from Aragai (Lukeino Formation, Tugen Hills, Kenya)". Geodiversitas. 44 (16): 471–504. doi:10.5252/geodiversitas2022v44a16. S2CID 248419008.
  21. ^ Llera Martín, C. J.; Rose, K. D.; Sylvester, A. D. (2022). "A morphometric analysis of early Eocene Euprimate tarsals from Gujarat, India". Journal of Human Evolution. 164: Article 103141. Bibcode:2022JHumE.16403141L. doi:10.1016/j.jhevol.2022.103141. PMID 35158085. S2CID 246811542.
  22. ^ Towle, I.; Constantino, P. J.; Borths, M. R.; Loch, C. (2022). "Tooth chipping patterns in Archaeolemur provide insight into diet and behavior". American Journal of Biological Anthropology. 180 (2): 401–408. doi:10.1002/ajpa.24674. PMC 10107942. PMID 36790760. S2CID 254493054.
  23. ^ Beck, R. M. D.; de Vries, D.; Janiak, M. C.; Goodhead, I. B.; Boubli, J. P. (2022). "Total evidence phylogeny of platyrrhine primates and a comparison of undated and tip-dating approaches". Journal of Human Evolution. 174. 103293. doi:10.1016/j.jhevol.2022.103293. PMID 36493598. S2CID 254395632.
  24. ^ Lundeen, I. K.; Kay, R. F. (2022). "Unique nasal turbinal morphology reveals Homunculus patagonicus functionally converged on modern platyrrhine olfactory sensitivity". Journal of Human Evolution. 167: Article 103184. Bibcode:2022JHumE.16703184L. doi:10.1016/j.jhevol.2022.103184. PMID 35462071. S2CID 248328939.
  25. ^ Plastiras, C. A.; Thiery, G.; Guy, F.; Kostopoulos, D. S.; Lazzari, V.; Merceron, G. (2022). "Feeding ecology of the last European colobine monkey, Dolichopithecus ruscinensis". Journal of Human Evolution. 168: Article 103199. Bibcode:2022JHumE.16803199P. doi:10.1016/j.jhevol.2022.103199. PMID 35667203. S2CID 249348855.
  26. ^ Brasil, M. F.; Monson, T. A.; Taylor, C. E.; Yohler, R. M.; Hlusko, L. J. (2022). "A Pleistocene assemblage of near-modern Papio hamadryas from the Middle Awash study area, Afar Rift, Ethiopia". American Journal of Biological Anthropology. 180 (1): 48–76. doi:10.1002/ajpa.24634. PMID 36790648. S2CID 253496649.
  27. ^ Brasil, M. F.; Monson, T. A.; Taylor, C. E.; Yohler, R. M.; Hlusko, L. J. (2022). "Hundreds of Colobus (Cercopithecidae: Primates) fossils from the later Pleistocene of Ethiopia's Middle Awash study area". American Journal of Biological Anthropology. 180: 77–114. doi:10.1002/ajpa.24639. S2CID 253491301.
  28. ^ Taylor, C. E.; Brasil, M. F.; Monson, T. A.; Yohler, R. M.; Hlusko, L. J. (2022). "Halibee fossil assemblages reveal later Pleistocene cercopithecins (Cercopithecidae: Primates) in the Middle Awash of Ethiopia". American Journal of Biological Anthropology. 180: 6–47. doi:10.1002/ajpa.24637. S2CID 253516646.
  29. ^ Pugh, K. D. (2022). "Phylogenetic analysis of Middle-Late Miocene apes". Journal of Human Evolution. 165: Article 103140. Bibcode:2022JHumE.16503140P. doi:10.1016/j.jhevol.2021.103140. PMID 35272113. S2CID 247298154.
  30. ^ Rossie, J. B.; Cote, S. M. (2022). "Additional hominoid fossils from the early Miocene of the Lothidok Formation, Kenya". American Journal of Biological Anthropology. 179 (2): 261–275. doi:10.1002/ajpa.24594. PMID 36790670. S2CID 251074838.
  31. ^ Pickford, M.; Senut, B.; Morales, J.; Braga, J. (2008). "First hominoid from the Late Miocene of Niger". South African Journal of Science. 104 (9–10): 337–339. hdl:10520/EJC96845.
  32. ^ Mocke, H.; Pickford, M.; Senut, B.; Gommery, D. (2022). "New information about African late middle Miocene (13-5.5 Ma) Hominoidea" (PDF). Communications of the Geological Survey of Namibia. 24: 33–66.
  33. ^ Ji, X.; Harrison, T.; Zhang, Y.; Wu, Y.; Zhang, C.; Hu, J.; Wu, D.; Hou, Y.; Li, S.; Wang, G.; Wang, Z. (2022). "The earliest hylobatid from the Late Miocene of China". Journal of Human Evolution. 171. 103251. Bibcode:2022JHumE.17103251J. doi:10.1016/j.jhevol.2022.103251. PMID 36113226. S2CID 252243877.
  34. ^ Cazenave, M.; Kivell, T. L.; Pina, M.; Begun, D. R.; Skinner, M. M. (2022). "Calcar femorale variation in extant and fossil hominids: Implications for identifying bipedal locomotion in fossil hominins" (PDF). Journal of Human Evolution. 167: Article 103183. Bibcode:2022JHumE.16703183C. doi:10.1016/j.jhevol.2022.103183. PMID 35462072. S2CID 248340113.
  35. ^ Lopatin, A. V.; Maschenko, E. N.; Dac, L. X. (2022). "Gigantopithecus blacki (Primates, Ponginae) from the Lang Trang Cave (Northern Vietnam): The Latest Gigantopithecus in the Late Pleistocene?". Doklady Biological Sciences. 502 (1): 6–10. doi:10.1134/S0012496622010069. PMID 35298746. S2CID 247520846.
  36. ^ Habinger, S. G.; Chavasseau, O.; Jaeger, J.-J.; Chaimanee, Y.; Soe, A. N.; Sein, C.; Bocherens, H. (2022). "Evolutionary ecology of Miocene hominoid primates in Southeast Asia". Scientific Reports. 12 (1): Article number 11841. Bibcode:2022NatSR..1211841H. doi:10.1038/s41598-022-15574-z. PMC 9276763. PMID 35821257.
  37. ^ Daver, G.; Guy, F.; Mackaye, H. T.; Likius, A.; Boisserie, J.-R.; Moussa, A.; Pallas, L.; Vignaud, P.; Clarisse, N. D. (2022). "Postcranial evidence of late Miocene hominin bipedalism in Chad". Nature. 609 (7925): 94–100. Bibcode:2022Natur.609...94D. doi:10.1038/s41586-022-04901-z. PMID 36002567. S2CID 234630242.
  38. ^ Towle, I.; MacIntosh, A. J. J.; Hirata, K.; Kubo, M. O.; Loch, C. (2022). "Atypical tooth wear found in fossil hominins also present in a Japanese macaque population". American Journal of Biological Anthropology. 178: 171–181. doi:10.1002/ajpa.24500. S2CID 247201199.
  39. ^ Bandini, E.; Harrison, R. A.; Motes-Rodrigo, A. (2022). "Examining the suitability of extant primates as models of hominin stone tool culture". Humanities and Social Sciences Communications. 9: Article number 74. doi:10.1057/s41599-022-01091-x.
  40. ^ Monson, T. A.; Weitz, A. P.; Brasil, M. F.; Hlusko, L. J. (2022). "Teeth, prenatal growth rates, and the evolution of human-like pregnancy in later Homo". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2200689119. Bibcode:2022PNAS..11900689M. doi:10.1073/pnas.2200689119. PMC 9564099. PMID 36191229. S2CID 252694551.
  41. ^ Gingerich, P. D. (2022). "Pattern and rate in the Plio-Pleistocene evolution of modern human brain size". Scientific Reports. 12 (1): Article number 11216. Bibcode:2022NatSR..1211216G. doi:10.1038/s41598-022-15481-3. PMC 9250492. PMID 35780143.
  42. ^ Frost, S. R.; White, F. J.; Reda, H. G.; Gilbert, C. C. (2022). "Biochronology of South African hominin-bearing sites: A reassessment using cercopithecid primates". Proceedings of the National Academy of Sciences of the United States of America. 119 (45). e2210627119. Bibcode:2022PNAS..11910627F. doi:10.1073/pnas.2210627119. PMC 9659350. PMID 36279427.
  43. ^ Pickford, M.; Senut, B.; Gommery, D.; Kipkech, J. (2022). "New Pliocene hominid fossils from Baringo County, Kenya". Fossil Imprint. 78 (2): 451–488. doi:10.37520/fi.2022.020. S2CID 255055545.
  44. ^ Sponheimer, M.; Daegling, D. J.; Ungar, P. S.; Bobe, R.; Paine, O. C. C. (2022). "Problems with Paranthropus". Quaternary International. 650: 40–51. doi:10.1016/j.quaint.2022.03.024. hdl:10400.1/19423. S2CID 248483873.
  45. ^ Braga, J.; Chinamatira, G.; Zipfel, B.; Zimmer, V. (2022). "New fossils from Kromdraai and Drimolen, South Africa, and their distinctiveness among Paranthropus robustus". Scientific Reports. 12 (1): Article number 13956. Bibcode:2022NatSR..1213956B. doi:10.1038/s41598-022-18223-7. PMC 9385619. PMID 35977986.
  46. ^ Frémondière, P.; Thollon, L.; Marchal, F.; Fornai, C.; Webb, N. M.; Haeusler, M. (2022). "Dynamic finite-element simulations reveal early origin of complex human birth pattern". Communications Biology. 5 (1): Article number 377. doi:10.1038/s42003-022-03321-z. PMC 9018746. PMID 35440693.
  47. ^ Ledogar, J. A.; Senck, S.; Villmoare, B. A.; Smith, A. L.; Weber, G. W.; Richmond, B. G.; Dechow, P. C.; Ross, C. F.; Grosse, I. R.; Wright, B. W.; Wang, Q.; Byron, C.; Benazzi, S.; Carlson, K. J.; Carlson, K. B.; Pryor McIntosh, L. C.; van Casteren, A.; Strait, D. S. (2022). "Mechanical compensation in the evolution of the early hominin feeding apparatus". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220711. doi:10.1098/rspb.2022.0711. PMC 9198777. PMID 35703052.
  48. ^ Su, D. F.; Yohannes Haile-Selassie (2022). "Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity". Journal of Human Evolution. 163: Article 103076. Bibcode:2022JHumE.16303076S. doi:10.1016/j.jhevol.2021.103076. PMID 34998271. S2CID 245788627.
  49. ^ Yohannes Haile-Selassie; Saylor, B. Z.; Mulugeta Alene; Deino, A.; Gibert, L.; Schwartz, G. T. (2022). "Comparative description and taxonomic affinity of 3.7-million-year-old hominin mandibles from Woranso-Mille (Ethiopia)". Journal of Human Evolution. 173. 103265. Bibcode:2022JHumE.17303265H. doi:10.1016/j.jhevol.2022.103265. PMID 36306541. S2CID 253152800.
  50. ^ Marchi, D.; Rimoldi, A.; García-Martínez, D.; Bastir, M. (2022). "Morphological correlates of distal fibular morphology with locomotion in great apes, humans, and Australopithecus afarensis". American Journal of Biological Anthropology. 178 (2): 286–300. doi:10.1002/ajpa.24507. PMC 9314891. PMID 36790753. S2CID 247544400.
  51. ^ Granger, D. E.; Stratford, D.; Bruxelles, L.; Gibbon, R. J.; Clarke, R. J.; Kuman, K. (2022). "Cosmogenic nuclide dating of Australopithecus at Sterkfontein, South Africa". Proceedings of the National Academy of Sciences of the United States of America. 119 (27): e2123516119. Bibcode:2022PNAS..11923516G. doi:10.1073/pnas.2123516119. PMC 9271183. PMID 35759668.
  52. ^ Harper, C. M.; Zipfel, B.; DeSilva, J. M.; McNutt, E. J.; Thackeray, F.; Braga, J. (2022). "A new early hominin calcaneus from Kromdraai (South Africa)". Journal of Anatomy. 241 (2): 500–517. doi:10.1111/joa.13660. PMC 9296044. PMID 35373345. S2CID 247937384.
  53. ^ Zanolli, C.; Davies, T. W.; Joannes-Boyau, R.; Beaudet, A.; Bruxelles, L.; de Beer, F.; Hoffman, J.; Hublin, J.-J.; Jakata, K.; Kgasi, L.; Kullmer, O.; Macchiarelli, R.; Pan, L.; Schrenk, F.; Santos, F.; Stratford, D.; Tawane, M.; Thackeray, F.; Xing, S.; Zipfel, B.; Skinner, M. M. (2022). "Dental data challenge the ubiquitous presence of Homo in the Cradle of Humankind". Proceedings of the National Academy of Sciences of the United States of America. 119 (28): e2111212119. Bibcode:2022PNAS..11911212Z. doi:10.1073/pnas.2111212119. PMC 9282359. PMID 35787044.
  54. ^ Timmermann, A.; Yun, K.-S.; Raia, P.; Ruan, J.; Mondanaro, A.; Zeller, E.; Zollikofer, C.; Ponce de León, M.; Lemmon, D.; Willeit, M.; Ganopolski, A. (2022). "Climate effects on archaic human habitats and species successions". Nature. 604 (7906): 495–501. Bibcode:2022Natur.604..495T. doi:10.1038/s41586-022-04600-9. PMC 9021022. PMID 35418680.
  55. ^ Cobo-Sánchez, L.; Pizarro-Monzo, M.; Cifuentes-Alcobendas, G.; Jiménez García, B.; Abellán Beltrán, N.; Courtenay, L. A.; Mabulla, A.; Baquedano, E.; Domínguez-Rodrigo, M. (2022). "Computer vision supports primary access to meat by early Homo 1.84 million years ago". PeerJ. 10: e14148. doi:10.7717/peerj.14148. PMC 9586113. PMID 36275476.
  56. ^ Barash, A.; Belmaker, M.; Bastir, M.; Soudack, M.; O'Brien, H. D.; Woodward, H.; Prendergast, A.; Barzilai, O.; Been, E. (2022). "The earliest Pleistocene record of a large-bodied hominin from the Levant supports two out-of-Africa dispersal events". Scientific Reports. 12 (1): Article number 1721. Bibcode:2022NatSR..12.1721B. doi:10.1038/s41598-022-05712-y. PMC 8810791. PMID 35110601.
  57. ^ Barr, W. A.; Pobiner, B.; Rowan, J.; Du, A.; Faith, J. T. (2022). "No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus". Proceedings of the National Academy of Sciences of the United States of America. 119 (5): e2115540119. Bibcode:2022PNAS..11915540B. doi:10.1073/pnas.2115540119. PMC 8812535. PMID 35074877. S2CID 246278450.
  58. ^ Margvelashvili, A.; Tappen, M.; Rightmire, G. P.; Tsikaridze, N.; Lordkipanidze, D. (2022). "An ancient cranium from Dmanisi: Evidence for interpersonal violence, disease, and possible predation by carnivores on Early Pleistocene Homo". Journal of Human Evolution. 166: Article 103180. Bibcode:2022JHumE.16603180M. doi:10.1016/j.jhevol.2022.103180. PMID 35367913. S2CID 247897321.
  59. ^ Zohar, I.; Alperson-Afil, N.; Goren-Inbar, N.; Prévost, M.; Tütken, T.; Sisma-Ventura, G.; Hershkovitz, I.; Najorka, J. (2022). "Evidence for the cooking of fish 780,000 years ago at Gesher Benot Ya'aqov, Israel". Nature Ecology & Evolution. 6 (12): 2016–2028. Bibcode:2022NatEE...6.2016Z. doi:10.1038/s41559-022-01910-z. PMID 36376603. S2CID 253522354.
  60. ^ Huang, C.; Li, J.; Gao, X. (2022). "Evidence of Fire Use by Homo erectus pekinensis: An XRD Study of Archaeological Bones From Zhoukoudian Locality 1, China". Frontiers in Earth Science. 9: Article 811319. Bibcode:2022FrEaS...9.1410H. doi:10.3389/feart.2021.811319.
  61. ^ Urciuoli, A.; Kubat, J.; Schisanowski, L.; Schrenk, F.; Zipfel, B.; Tawane, M.; Bam, L.; Alba, D. M.; Kullmer, O. (2022). "Cochlear morphology of Indonesian Homo erectus from Sangiran". Journal of Human Evolution. 165: Article 103163. Bibcode:2022JHumE.16503163U. doi:10.1016/j.jhevol.2022.103163. PMID 35299091. S2CID 247456286.
  62. ^ Husson, L.; Salles, T.; Lebatard, A.-E.; Zerathe, S.; Braucher, R.; Noerwidi, S.; Aribowo, S.; Mallard, C.; Carcaillet, J.; Natawidjaja, D. H.; Bourlès, D.; ASTER team (2022). "Javanese Homo erectus on the move in SE Asia circa 1.8 Ma". Scientific Reports. 12 (1). 19012. Bibcode:2022NatSR..1219012H. doi:10.1038/s41598-022-23206-9. PMC 9643487. PMID 36347897.
  63. ^ Liu, W.; Athreya, S.; Xing, S.; Wu, X. (2022). "Hominin evolution and diversity: a comparison of earlier-Middle and later-Middle Pleistocene hominin fossil variation in China". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210040. doi:10.1098/rstb.2021.0040. PMC 8819364. PMID 35125004. S2CID 246608510.
  64. ^ Zanolli, C.; Kaifu, Y.; Pan, L.; Xing, S.; Mijares, A. S.; Kullmer, O.; Schrenk, F.; Corny, J.; Dizon, E.; Robles, E.; Détroit, F. (2022). "Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications" (PDF). Journal of Human Evolution. 163: Article 103124. Bibcode:2022JHumE.16303124Z. doi:10.1016/j.jhevol.2021.103124. PMID 34998272. S2CID 245784713.
  65. ^ Wu, X.-J.; Bae, C. J.; Friess, M.; Xing, S.; Athreya, S.; Liu, W. (2022). "Evolution of cranial capacity revisited: A view from the late Middle Pleistocene cranium from Xujiayao, China". Journal of Human Evolution. 163: Article 103119. Bibcode:2022JHumE.16303119W. doi:10.1016/j.jhevol.2021.103119. PMID 35026677. S2CID 245858877.
  66. ^ Vahdati, A. R.; Weissmann, J. D.; Timmermann, A.; Ponce de León, M.; Zollikofer, C. P. E. (2022). "Exploring Late Pleistocene hominin dispersals, coexistence and extinction with agent-based multi-factor models". Quaternary Science Reviews. 279: Article 107391. Bibcode:2022QSRv..27907391V. doi:10.1016/j.quascirev.2022.107391. S2CID 246336682.
  67. ^ Modesto-Mata, M.; García-González, R.; Quintino, Y.; García-Campos, C.; Martínez de Pinillos, M.; Martín-Francés, L.; Martinón-Torres, M.; Heuzé, Y.; Carbonell, E.; Arsuaga, J. L.; Dean, M. C.; Bermúdez de Castro, J. M. (2022). "Early and Middle Pleistocene hominins from Atapuerca (Spain) show differences in dental developmental patterns" (PDF). American Journal of Biological Anthropology. 178 (2): 273–285. doi:10.1002/ajpa.24487. S2CID 246503330.
  68. ^ Sala, N.; Pantoja-Pérez, A.; Gracia, A.; Arsuaga, J. L. (2024). "Taphonomic-forensic analysis of the hominin skulls from the Sima de los Huesos". The Anatomical Record. 307 (7): 2259–2277. doi:10.1002/ar.24883. PMID 35195943. S2CID 247056897.
  69. ^ Harvati, K.; Ackermann, R. R. (2022). "Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins". Nature Ecology & Evolution. 6 (10): 1573–1585. Bibcode:2022NatEE...6.1573H. doi:10.1038/s41559-022-01875-z. PMID 36064759. S2CID 252087953.
  70. ^ Demeter, F.; Zanolli, C.; Westaway, K. E.; Joannes-Boyau, R.; Duringer, P.; Morley, M. W.; Welker, F.; Rüther, P. L.; Skinner, M. M.; McColl, H.; Gaunitz, C.; Vinner, L.; Dunn, T. E.; Olsen, J. V.; Sikora, M.; Ponche, J.-L.; Suzzoni, E.; Frangeul, S.; Boesch, Q.; Antoine, P.-O.; Pan, L.; Xing, S.; Zhao, J.-X.; Bailey, R. M.; Boualaphane, S.; Sichanthongtip, P.; Sihanam, D.; Patole-Edoumba, E.; Aubaile, F.; Crozier, F.; Bourgon, N.; Zachwieja, A.; Luangkhoth, T.; Souksavatdy, V.; Sayavongkhamdy, T.; Cappellini, E.; Bacon, A.-M.; Hublin, J.-J.; Willerslev, E.; Shackelford, L. (2022). "A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos". Nature Communications. 13 (1): Article number 2557. Bibcode:2022NatCo..13.2557D. doi:10.1038/s41467-022-29923-z. PMC 9114389. PMID 35581187.
  71. ^ Williams, S. A.; Zeng, I.; Paton, G. J.; Yelverton, C.; Dunham, C.A.; Ostrofsky, K. R.; Shukman, S.; Avilez, M. V.; Eyre, J.; Loewen, T.; Prang, T. C.; Meyer, M. R. (2022). "Inferring lumbar lordosis in Neandertals and other hominins". PNAS Nexus. 1 (1): pgab005. doi:10.1093/pnasnexus/pgab005. PMC 9801964. PMID 36712807.
  72. ^ Mayoral, E.; Díaz-Martínez, I.; Duveau, J.; Santos, A.; Rodríguez Ramírez, A.; Morales, J. A.; Morales, L. A.; Díaz-Delgado, R. (2021). "Tracking late Pleistocene Neandertals on the Iberian coast". Scientific Reports. 11 (1). 4103. Bibcode:2021NatSR..11.4103M. doi:10.1038/s41598-021-83413-8. PMC 7952904. PMID 33707474.
  73. ^ Mayoral, E.; Duveau, J.; Santos, A.; Rodríguez Ramírez, A.; Morales, J. A.; Díaz-Delgado, R.; Rivera-Silva, J.; Gómez-Olivencia, A.; Díaz-Martínez, I. (2022). "New dating of the Matalascañas footprints provides new evidence of the Middle Pleistocene (MIS 9-8) hominin paleoecology in southern Europe". Scientific Reports. 12 (1). 17505. Bibcode:2022NatSR..1217505M. doi:10.1038/s41598-022-22524-2. PMC 9581921. PMID 36261474.
  74. ^ Roksandic, M.; Radović, P.; Lindal, J.; Mihailović, D. (2022). "Early Neanderthals in contact: The Chibanian (Middle Pleistocene) hominin dentition from Velika Balanica Cave, Southern Serbia". Journal of Human Evolution. 166: Article 103175. Bibcode:2022JHumE.16603175R. doi:10.1016/j.jhevol.2022.103175. PMID 35339947. S2CID 247688781.
  75. ^ Andreeva, T. V.; Manakhov, A. D.; Gusev, F. E.; Patrikeev, A. D.; Golovanova, L. V.; Doronichev, V. B.; Shirobokov, I. G.; Rogaev, E. I. (2022). "Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations". Scientific Reports. 12 (1): Article number 13016. Bibcode:2022NatSR..1213016A. doi:10.1038/s41598-022-16164-9. PMC 9338269. PMID 35906446.
  76. ^ Skov, L.; Peyrégne, S.; Popli, D.; Iasi, L. N. M.; Devièse, T.; Slon, V.; Zavala, E. I.; Hajdinjak, M.; Sümer, A. P.; Grote, S.; Bossoms Mesa, A.; López Herráez, D.; Nickel, B.; Nagel, S.; Richter, J.; Essel, E.; Gansauge, M.; Schmidt, A.; Korlević, P.; Comeskey, D.; Derevianko, A. P.; Kharevich, A.; Markin, S. V.; Talamo, S.; Douka, K.; Krajcarz, M. T.; Roberts, R. G.; Higham, T.; Viola, B.; Krivoshapkin, A. I.; Kolobova, K. A.; Kelso, J.; Meyer, M.; Pääbo, S.; Peter, B. M. (2022). "Genetic insights into the social organization of Neanderthals". Nature. 610 (7932): 519–525. Bibcode:2022Natur.610..519S. doi:10.1038/s41586-022-05283-y. PMC 9581778. PMID 36261548.
  77. ^ Jaouen, K.; Villalba-Mouco, V.; Smith, G. M.; Trost, M.; Leichliter, J.; Lüdecke, T.; Méjean, P.; Mandrou, S.; Chmeleff, J.; Guiserix, D.; Bourgon, N.; Blasco, F.; Cardoso, J. M.; Duquenoy, C.; Moubtahij, Z.; Salazar Garcia, D. C.; Richards, M.; Tütken, T.; Hublin, J.-J.; Utrilla, P.; Montes, L. (2022). "A Neandertal dietary conundrum: Insights provided by tooth enamel Zn isotopes from Gabasa, Spain". Proceedings of the National Academy of Sciences of the United States of America. 119 (43): e2109315119. Bibcode:2022PNAS..11909315J. doi:10.1073/pnas.2109315119. PMC 9618064. PMID 36252021.
  78. ^ Vidal-Cordasco, M.; Ocio, D.; Hickler, T.; Marín-Arroyo, A. B. (2022). "Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia". Nature Ecology & Evolution. 6 (11): 1644–1657. Bibcode:2022NatEE...6.1644V. doi:10.1038/s41559-022-01861-5. PMC 9630105. PMID 36175541. S2CID 252622418.
  79. ^ Pinson, A.; Xing, L.; Namba, T.; Kalebic, N.; Peters, J.; Eugster Oegema, C.; Traikov, S.; Reppe, K.; Riesenberg, S.; Maricic, T.; Derihaci, R.; Wimberger, P.; Pääbo, S.; Huttner, W. B. (2022). "Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals". Science. 377 (6611): eabl6422. doi:10.1126/science.abl6422. PMID 36074851. S2CID 252161562.
  80. ^ Foerster, V.; Asrat, A.; Bronk Ramsey, C.; Brown, E. T.; Chapot, M. S.; Deino, A.; Duesing, W.; Grove, M.; Hahn, A.; Junginger, A.; Kaboth-Bahr, S.; Lane, C. S.; Opitz, S.; Noren, A.; Roberts, H. M.; Stockhecke, M.; Tiedemann, R.; Vidal, C. M.; Vogelsang, R.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H. (2022). "Pleistocene climate variability in eastern Africa influenced hominin evolution". Nature Geoscience. 15 (10): 805–811. Bibcode:2022NatGe..15..805F. doi:10.1038/s41561-022-01032-y. PMC 9560894. PMID 36254302. S2CID 252549905.
  81. ^ Vidal, C. M.; Lane, C. S.; Asfawossen Asrat; Barfod, D. N.; Mark, D. F.; Tomlinson, E. L.; Amdemichael Zafu Tadesse; Gezahegn Yirgu; Deino, A.; Hutchison, W.; Mounier, A.; Oppenheimer, C. (2022). "Age of the oldest known Homo sapiens from eastern Africa". Nature. 601 (7894): 579–583. Bibcode:2022Natur.601..579V. doi:10.1038/s41586-021-04275-8. PMC 8791829. PMID 35022610.
  82. ^ Beaudet, A.; d'Errico, F.; Backwell, L.; Wadley, L.; Zipfel, B.; de la Peña, P.; Reyes-Centeno, H. (2022). "A reappraisal of the Border Cave 1 cranium (KwaZulu-Natal, South Africa)". Quaternary Science Reviews. 282: Article 107452. Bibcode:2022QSRv..28207452B. doi:10.1016/j.quascirev.2022.107452. S2CID 247637899.
  83. ^ Zollikofer, C. P. E.; Bienvenu, T.; Yonas Beyene; Suwa, G.; Berhane Asfaw; White, T. D.; Ponce de León, M. S. (2022). "Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia". Proceedings of the National Academy of Sciences of the United States of America. 119 (32): e2123553119. Bibcode:2022PNAS..11923553Z. doi:10.1073/pnas.2123553119. PMC 9371682. PMID 35914174.
  84. ^ Timbrell, L.; Grove, M.; Manica, A.; Rucina, S.; Blinkhorn, J. (2022). "A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa". Scientific Reports. 12 (1): Article number 3689. Bibcode:2022NatSR..12.3689T. doi:10.1038/s41598-022-07742-y. PMC 8901736. PMID 35256702.
  85. ^ Bretzke, K.; Preusser, F.; Jasim, S.; Miller, C.; Preston, G.; Raith, K.; Underdown, S. J.; Parton, A.; Parker, A. G. (2022). "Multiple phases of human occupation in Southeast Arabia between 210,000 and 120,000 years ago". Scientific Reports. 12 (1): Article number 1600. Bibcode:2022NatSR..12.1600B. doi:10.1038/s41598-022-05617-w. PMC 8803878. PMID 35102262.
  86. ^ Padilla-Iglesias, C.; Atmore, L. M.; Olivero, J.; Lupo, K.; Manica, A.; Arango Isaza, E.; Vinicius, L.; Migliano, A. B. (2022). "Population interconnectivity over the past 120,000 years explains distribution and diversity of Central African hunter-gatherers". Proceedings of the National Academy of Sciences of the United States of America. 119 (21): e2113936119. Bibcode:2022PNAS..11913936P. doi:10.1073/pnas.2113936119. PMC 9173804. PMID 35580185. S2CID 248858196.
  87. ^ Marquer, L.; Otto, T.; Ben Arous, E.; Stoetzel, E.; Campmas, E.; Zazzo, A.; Tombret, O.; Seim, A.; Kofler, W.; Falguères, C.; Abdeljalil El Hajraoui, M.; Nespoulet, R. (2022). "The first use of olives in Africa around 100,000 years ago" (PDF). Nature Plants. 8 (3): 204–208. doi:10.1038/s41477-022-01109-x. PMID 35318448. S2CID 247615211.
  88. ^ Mackay, A.; Armitage, S. J.; Niespolo, E. M.; Sharp, W. D.; Stahlschmidt, M. C.; Blackwood, A. F.; Boyd, K. C.; Chase, B. M.; Lagle, S. E.; Kaplan, C. F.; Low, M. A.; Martisius, N. L.; McNeill, P. J.; Moffat, I.; O'Driscoll, C. A.; Rudd, R.; Orton, J.; Steele, T. E. (2022). "Environmental influences on human innovation and behavioural diversity in southern Africa 92–80 thousand years ago" (PDF). Nature Ecology & Evolution. 6 (4): 361–369. Bibcode:2022NatEE...6..361M. doi:10.1038/s41559-022-01667-5. hdl:11250/3032859. PMID 35228670. S2CID 247169784.
  89. ^ Slimak, L.; Zanolli, C.; Higham, T.; Frouin, M.; Schwenninger, J.-L.; Arnold, L. J.; Demuro, M.; Douka, K.; Mercier, N.; Guérin, G.; Valladas, H.; Yvorra, P.; Giraud, Y.; Seguin-Orlando, A.; Orlando, L.; Lewis, J. E.; Muth, X.; Camus, H.; Vandevelde, S.; Buckley, M.; Mallol, C.; Stringer, C.; Metz, L. (2022). "Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France". Science Advances. 8 (6): eabj9496. Bibcode:2022SciA....8J9496S. doi:10.1126/sciadv.abj9496. PMC 8827661. PMID 35138885.
  90. ^ Weber, G. W.; Lukeneder, A.; Harzhauser, M.; Mitteroecker, P.; Wurm, L.; Hollaus, L.-M.; Kainz, S.; Haack, F.; Antl-Weiser, W.; Kern, A. (2022). "The microstructure and the origin of the Venus from Willendorf". Scientific Reports. 12 (1): Article number 2926. Bibcode:2022NatSR..12.2926W. doi:10.1038/s41598-022-06799-z. PMC 8885675. PMID 35228605.
  91. ^ Wang, F.-G.; Yang, S.-X.; Ge, J.-Y.; Ollé, A.; Zhao, K.-L.; Yue, J.-P.; Rosso, D. E.; Douka, K.; Guan, Y.; Li, W.-Y.; Yang, H.-Y.; Liu, L.-Q.; Xie, F.; Guo, Z.-T.; Zhu, R.-X.; Deng, C.-L.; d'Errico, F.; Petraglia, M. (2022). "Innovative ochre processing and tool use in China 40,000 years ago". Nature. 603 (7900): 284–289. Bibcode:2022Natur.603..284W. doi:10.1038/s41586-022-04445-2. hdl:10072/415808. PMID 35236981. S2CID 247220082.
  92. ^ Maloney, T. R.; Dilkes-Hall, I. E.; Vlok, M.; Oktaviana, A. A.; Setiawan, P.; Drajat Priyatno, A. A.; Ririmasse, M.; Geria, I. M.; Effendy, M. A. R.; Istiawan, B.; Atmoko, F. T.; Adhityatama, S.; Moffat, I.; Joannes-Boyau, R.; Brumm, A.; Aubert, M. (2022). "Surgical amputation of a limb 31,000 years ago in Borneo". Nature. 609 (7927): 547–551. Bibcode:2022Natur.609..547M. doi:10.1038/s41586-022-05160-8. PMC 9477728. PMID 36071168.
  93. ^ Zhang, X.; Ji, X.; Li, C.; Yang, T.; Huang, J.; Zhao, Y.; Wu, Y.; Ma, S.; Pang, Y.; Huang, Y.; He, Y.; Su, B. (2022). "A Late Pleistocene human genome from Southwest China". Current Biology. 32 (14): 3095–3109.e5. Bibcode:2022CBio...32E3095Z. doi:10.1016/j.cub.2022.06.016. PMID 35839766. S2CID 250502011.
  94. ^ Surovell, T. A.; Allaun, S. A.; Crass, B. A.; Gingerich, J. A. M.; Graf, K. E.; Holmes, C. E.; Kelly, R. L.; Kornfeld, M.; Krasinski, K. E.; Larson, M. L.; Pelton, S. R.; Wygal, B. T. (2022). "Late date of human arrival to North America: Continental scale differences in stratigraphic integrity of pre-13,000 BP archaeological sites". PLOS ONE. 17 (4): e0264092. Bibcode:2022PLoSO..1764092S. doi:10.1371/journal.pone.0264092. PMC 9020715. PMID 35442993.
  95. ^ Rowe, T. B.; Stafford, T. W.; Fisher, D. C.; Enghild, J. J.; Quigg, J. M.; Ketcham, R. A.; Sagebiel, J. C.; Hanna, R.; Colbert, M. W. (2022). "Human Occupation of the North American Colorado Plateau ~37,000 Years Ago". Frontiers in Ecology and Evolution. 10: Article 903795. doi:10.3389/fevo.2022.903795.
  96. ^ Davis, L. G.; Madsen, D. B.; Sisson, D. A.; Becerra-Valdivia, L.; Higham, T.; Stueber, D.; Bean, D. W.; Nyers, A. J.; Carroll, A.; Ryder, C.; Sponheimer, M.; Izuho, M.; Iizuka, F.; Li, G.; Epps, C. W.; Halford, F. K. (2022). "Dating of a large tool assemblage at the Cooper's Ferry site (Idaho, USA) to ~15,785 cal yr B.P. extends the age of stemmed points in the Americas". Science Advances. 8 (51). eade1248. Bibcode:2022SciA....8E1248D. doi:10.1126/sciadv.ade1248. PMC 9788777. PMID 36563150.
  97. ^ Iriarte, J.; Ziegler, M. J.; Outram, A. K.; Robinson, M.; Roberts, P.; Aceituno, F. J.; Morcote-Ríos, G.; Keesey, T. M. (2022). "Ice Age megafauna rock art in the Colombian Amazon?". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1849): Article ID 20200496. doi:10.1098/rstb.2020.0496. PMC 8899627. PMID 35249392.
  98. ^ Lipson, M.; Sawchuk, E. A.; Thompson, J. C.; Oppenheimer, J.; Tryon, C. A.; Ranhorn, K. L.; de Luna, K. M.; Sirak, K. A.; Olalde, I.; Ambrose, S. H.; Arthur, J. W.; Arthur, K. J. W.; Ayodo, G.; Bertacchi, A.; Cerezo-Román, J. I.; Culleton, B. J.; Curtis, M. C.; Davis, J.; Gidna, A. O.; Hanson, A.; Kaliba, P.; Katongo, M.; Kwekason, A.; Laird, M. F.; Lewis, J.; Mabulla, A. Z. P.; Mapemba, F.; Morris, A.; Mudenda, G.; Mwafulirwa, R.; Mwangomba, D.; Ndiema, E.; Ogola, C.; Schilt, F.; Willoughby, P. R.; Wright, D. K.; Zipkin, A.; Pinhasi, R.; Kennett, D. J.; Manthi, F. K.; Rohland, N.; Patterson, N.; Reich, D.; Prendergast, M. E. (2022). "Ancient DNA and deep population structure in sub-Saharan African foragers". Nature. 603 (7900): 290–296. Bibcode:2022Natur.603..290L. doi:10.1038/s41586-022-04430-9. PMC 8907066. PMID 35197631. S2CID 247083477.
  99. ^ Guy, Jack. "DNA reveals biggest-ever human family tree, dating back 100,000 years". CNN. Retrieved 10 March 2022.
  100. ^ Wong, Yan; Wohns, Anthony Wilder. "We're analysing DNA from ancient and modern humans to create a "family tree of everyone"". Retrieved 21 March 2022.
  101. ^ Wohns, Anthony Wilder; Wong, Yan; Jeffery, Ben; Akbari, Ali; Mallick, Swapan; Pinhasi, Ron; Patterson, Nick; Reich, David; Kelleher, Jerome; McVean, Gil (25 February 2022). "A unified genealogy of modern and ancient genomes". Science. 375 (6583): eabi8264. bioRxiv 10.1101/2021.02.16.431497v2. doi:10.1126/science.abi8264. ISSN 0036-8075. PMC 10027547. PMID 35201891. S2CID 247106458.
  102. ^ "Human evolution: Brain, gut and immune system were fine-tuned after split from common ancestor of chimpanzees". Duke University via phys.org. Retrieved 18 December 2022.
  103. ^ Mangan, Riley J.; Alsina, Fernando C.; Mosti, Federica; Sotelo-Fonseca, Jesús Emiliano; Snellings, Daniel A.; Au, Eric H.; Carvalho, Juliana; Sathyan, Laya; Johnson, Graham D.; Reddy, Timothy E.; Silver, Debra L.; Lowe, Craig B. (23 November 2022). "Adaptive sequence divergence forged new neurodevelopmental enhancers in humans". Cell. 185 (24): 4587–4603.e23. doi:10.1016/j.cell.2022.10.016. ISSN 0092-8674. PMC 10013929. PMID 36423581.
  104. ^ a b c d e f g h i j k Korth, W. W.; Boyd, C. A.; Person, J. J.; Anderson, D. (2022). "Fossil Mammals from ant mounds situated on exposures of the Big Cottonwood Creek Member of the Chadron Formation (latest Eocene-early Oligocene), Sioux County, Nebraska". Paludicola. 13 (4): 191–344.
  105. ^ de Bruijn, H.; Marković, Z.; Wessels, W.; van de Weerd, A. A. (2022). "On the antiquity and status of the Spalacidae, new data from the late Eocene of south-East Serbia". Palaeobiodiversity and Palaeoenvironments. 103 (2): 433–445. doi:10.1007/s12549-022-00529-z. S2CID 249184210.
  106. ^ a b Vianey-Liaud, M.; Hautier, L. (2022). "Revision of the genus Protadelomys, a middle Eocene theridomyoid rodent: evolutionary and biochronological implications". Swiss Journal of Palaeontology. 141 (1): Article 8. Bibcode:2022SwJP..141....8V. doi:10.1186/s13358-022-00245-3. S2CID 249184284.
  107. ^ a b Bilgin, M.; Joniak, P.; Peláez Campomanes, P.; Göktaş, F.; Mayda, S.; Lorinser, C.; Wijbrans, J.; Kaya, T.; van den Hoek Ostende, L. W. (2022). "Beydere 3: a new early Miocene small mammal assemblage from the western Anatolia, Turkey". Historical Biology: An International Journal of Paleobiology. 35 (7): 1092–1111. doi:10.1080/08912963.2022.2077646. S2CID 259139843.
  108. ^ Calede, J. J. M.; Tse, Y. T.; Cairns, K. D. (2022). "The first evidence of Heosminthus from North America and the phylogenetics of Sminthidae (Mammalia, Rodentia, Dipodoidea): biogeographical implications". Journal of Systematic Palaeontology. 20 (1). 2111232. doi:10.1080/14772019.2022.2111232. S2CID 252486684.
  109. ^ White, R.; Mead, J.I.; Morgan, G.S.; Deméré, T.A. (2022). "A New Record of Capybara (Rodentia: Caviidae: Hydrochoerinae) from the Pleistocene of San Diego County, California with Remarks on Their Biogeography and Dispersal in the Pleistocene of Western North America". Vertebrate Anatomy Morphology Palaeontology. 9 (1): 131–155. doi:10.18435/vamp29379. S2CID 247352090.
  110. ^ Czernielewski, M. (2022). "A new species of Hystrix (Rodentia: Hystricidae) from the Pliocene site of Węże 1 in southern Poland". Acta Geologica Polonica. 73 (1): 73–83. doi:10.24425/agp.2022.142649. S2CID 260019772.
  111. ^ Kraatz, B. (2022). "Rodents from the Baynunah Formation". In F. Bibi; B. Kraatz; M. J. Beech; A. Hill (eds.). Sands of Time. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 191–201. doi:10.1007/978-3-030-83883-6_12. ISBN 978-3-030-83882-9.
  112. ^ a b c d Patnaik, R.; Singh, N. P.; Sharma, K. M.; Singh, N. A.; Choudhary, D.; Singh, Y. P.; Kumar, R.; Wazir, W. A.; Sahni, A. (2022). "New rodents shed light on the age and ecology of late Miocene ape locality of Tapar (Gujarat, India)". Journal of Systematic Palaeontology. 20 (1): Article 2084701. Bibcode:2022JSPal..2084701P. doi:10.1080/14772019.2022.2084701. S2CID 251419771.
  113. ^ Daxner-Höck, G.; Mörs, T.; Filinov, I. A.; Shchetnikov, A. A.; Bayarmaa, B.; Namzalova, O.; Erbajeva, M. A. (2022). "Gliridae and Eomyidae (Rodentia) of the Miocene Tagay fauna (Olkhon Island, Lake Baikal, Eastern Siberia)". Palaeobiodiversity and Palaeoenvironments. 102 (4): 859–871. Bibcode:2022PdPe..102..859D. doi:10.1007/s12549-022-00551-1. PMC 9758103. PMID 36540164.
  114. ^ Agustí, J.; Piñero, P.; Lozano-Fernández, I.; Jiménez-Arenas, J. M. (2022). "A new genus and species of arvicolid rodent (Mammalia) from the early Pleistocene of Spain". Comptes Rendus Palevol. 21 (39): 847–858. doi:10.5852/cr-palevol2022v21a39. hdl:10481/80506. S2CID 253440495.
  115. ^ Vianey-Liaud, M.; Vidalenc, D.; Orliac, M. J.; Maugoust, J.; Lézin, C.; Pélissié, T. (2022). "Rongeurs de la localité éocène de Cos (Tarn-et-Garonne, Quercy, France). Comparaison avec les rongeurs de localités de la transition Éocène inférieur/Éocène moyen". Geodiversitas. 44 (26): 753–800. doi:10.5252/geodiversitas2022v44a26. S2CID 252213005.
  116. ^ Čermák, S.; Oliver, A.; Fejfar, O. (2022). "A new species of Megacricetodon from the Early-Middle Miocene of Czech Republic and its importance for the understanding of the earliest evolution and dispersal of the genus in Europe". Historical Biology: An International Journal of Paleobiology. 35 (11): 2135–2153. doi:10.1080/08912963.2022.2134783. S2CID 253700943.
  117. ^ Calede, J. J. M. (2022). "The oldest semi-aquatic beaver in the world and a new hypothesis for the evolution of locomotion in Castoridae". Royal Society Open Science. 9 (8): Article ID 220926. Bibcode:2022RSOS....920926C. doi:10.1098/rsos.220926. PMC 9399697. PMID 36016911.
  118. ^ Markova, E.; Borodin, A. (2022). "An advanced form of Microtus nivaloides Forsyth Major, 1902 (Arvicolinae, Rodentia) in the late Middle Pleistocene of West Siberia: facts and hypotheses". Historical Biology: An International Journal of Paleobiology. 35 (10): 1975–1991. doi:10.1080/08912963.2022.2130289. S2CID 252799931.
  119. ^ a b Stoetzel, E.; Pickford, M. (2022). "Étude d'un assemblage original de microvertébrés du Pléistocène moyen du nord-est de l'Algérie (Ben Kérat, Oued Zenati) et description de deux nouveaux muridés". Geodiversitas. 44 (8): 237–263. doi:10.5252/geodiversitas2022v44a8. S2CID 247084578.
  120. ^ Wang, B.-Y. (2022). "A new species of Pararhizomys (Tachyoryctoidinae, Muroidea) from Linxia Basin of Gansu Province". Vertebrata PalAsiatica. 60 (4): 271–277. doi:10.19615/j.cnki.2096-9899.220403.
  121. ^ a b c Arnal, M.; Pérez, M. E.; Tejada Medina, L. M.; Campbell, K. E. (2022). "The high taxonomic diversity of the Palaeogene hystricognath rodents (Caviomorpha) from Santa Rosa (Peru, South America) framed within a new geochronological context". Historical Biology: An International Journal of Paleobiology. 34 (12): 2350–2373. Bibcode:2022HBio...34.2350A. doi:10.1080/08912963.2021.2017916. S2CID 253500485.
  122. ^ a b Sinitsa, M. V.; Delinschi, A. (2022). "A revision of Sinotamias (Rodentia, Sciuridae, Xerinae) from eastern Europe, with a discussion of the evolutionary history of the genus". Historical Biology: An International Journal of Paleobiology. 35 (10): 1917–1934. doi:10.1080/08912963.2022.2127096. S2CID 252802002.
  123. ^ Daxner-Höck, G.; Mörs, T.; Filinov, I. A.; Shchetnikov, A.; Erbajeva, M. A. (2022). "Geology and lithology of the Tagay-1 section at Olkhon Island (Lake Baikal, Eastern Siberia), and description of Aplodontidae, Mylagaulidae and Sciuridae (Rodentia, Mammalia)". Palaeobiodiversity and Palaeoenvironments. 102 (4): 843–857. Bibcode:2022PdPe..102..843D. doi:10.1007/s12549-022-00548-w. PMC 9758249. PMID 36540162. S2CID 253987666.
  124. ^ Tesakov, A.; Bondarev, A. (2022). "Down to the roots of lemmings: a new species of basal lemming from the upper Pliocene of West Siberia". Journal of Vertebrate Paleontology. 41 (5): e2036173. doi:10.1080/02724634.2021.2036173. S2CID 247565907.
  125. ^ Li, Qian; Li, Qi; Xu, Rancheng; Wang, Yuanqing (2022). "Rodent faunas, their paleogeographic pattern, and responses to climate changes from the early Eocene to the early Oligocene in Asia". Frontiers in Ecology and Evolution. 10: Article 955779. doi:10.3389/fevo.2022.955779.
  126. ^ Grau-Camats, M.; Bertrand, O. C.; Prieto, J.; López-Torres, S.; Silcox, M. T.; Casanovas-Vilar, I. (2022). "A Miopetaurista (Rodentia, Sciuridae) cranium from the Middle Miocene of Bavaria (Germany) and brain evolution in flying squirrels" (PDF). Papers in Palaeontology. 8 (4): e1454. Bibcode:2022PPal....8E1454G. doi:10.1002/spp2.1454. S2CID 251084738.
  127. ^ Engelman, R. K. (2022). "Resizing the largest known extinct rodents (Caviomorpha: Dinomyidae, Neoepiblemidae) using occipital condyle width". Royal Society Open Science. 9 (6): Article ID 220370. Bibcode:2022RSOS....920370E. doi:10.1098/rsos.220370. PMC 9198521. PMID 35719882.
  128. ^ Pessoa-Lima, C.; Tostes-Figueiredo, J.; Macedo-Ribeiro, N.; Hsiou, A. S.; Muniz, F. P.; Maulin, J.A.; Franceschini-Santos, V. H.; Sousa, F. B.; Barbosa, F.; Line, S. R. P.; Gerlach, R. F.; Langer, M. C. (2022). "Structure and Chemical Composition of ca. 10-Million-Year-Old (Late Miocene of Western Amazon) and Present-Day Teeth of Related Species". Biology. 11 (11). 1636. doi:10.3390/biology11111636. PMC 9687460. PMID 36358337.
  129. ^ Azzarà, B.; Cherin, M.; Adams, J.; Boschian, G.; Crotti, M.; Denys, C.; Fressoia, L.; Kimambo, J. S.; Kwekason, A.; Iurino, D. A.; Manzi, G.; Masao, F. T.; Sahleselasie Melaku; Menconero, S.; Mori, E.; Zipfel, B. (2022). "The Thorny Issue of African Porcupines: a New Mandible of Hystrix makapanensis from Olduvai Gorge (Tanzania) and Rediagnosis of the Species". Journal of Mammalian Evolution. 29 (2): 447–474. doi:10.1007/s10914-021-09588-z. PMC 8776392. PMID 35079214.
  130. ^ Bento Da Costa, L.; Senut, B. (2022). "Skeleton of Early Miocene Bathyergoides neotertiarius Stromer, 1923 (Rodentia, Mammalia) from Namibia: behavioural implication". Geodiversitas. 44 (10): 291–319. doi:10.5252/geodiversitas2022v44a10. S2CID 247483866.
  131. ^ Sostillo, R.; Cardonatto, M. C.; Kerber, L.; Montalvo, C. I. (2022). "Taxonomic and ontogenetic diversity of Dinomyidae (Rodentia) from the late Miocene-early Pliocene of La Pampa province (Argentina) based on cranio-dental remains". Journal of South American Earth Sciences. 114: Article 103704. Bibcode:2022JSAES.11403704S. doi:10.1016/j.jsames.2021.103704. S2CID 245685455.
  132. ^ Rasia, L. L. (2023). "Systematic revision of Gyriabrus (Rodentia, Caviomorpha), a large dinomyid from the Neogene of South America". Historical Biology: An International Journal of Paleobiology. 35 (3): 347–355. Bibcode:2023HBio...35..347R. doi:10.1080/08912963.2022.2042810. S2CID 247212452.
  133. ^ Busker, F. (2022). "New insight of the genus Cephalomyopsis (Caviomorpha, Cephalomyidae): Systematic revision and paleobiogeographical implications". Journal of South American Earth Sciences. 121. 104145. doi:10.1016/j.jsames.2022.104145.
  134. ^ McGrath, A. J.; Chick, J.; Croft, D. A.; Dodson, H. E.; Flynn, J. J.; Wyss, A. R. (2022). "Cavioids, chinchilloids, and erethizontoids (Hystricognathi, Rodentia, Mammalia) of the early Miocene Pampa Castillo fauna, Chile". American Museum Novitates (3984): 1–46. doi:10.1206/3984.1. hdl:2246/7291. S2CID 246635290.
  135. ^ Kalthoff, D. C.; Fejfar, O.; Kimura, Y.; Bailey, B. E.; Mörs, T. (2022). "Incisor enamel microstructure places New and Old World Eomyidae outside Geomorpha (Rodentia, Mammalia)". Zoologica Scripta. 51 (4): 381–400. doi:10.1111/zsc.12541. S2CID 249084909.
  136. ^ Lechner, T.; Böhme, M. (2022). "The beaver Steneofiber depereti from the lower Upper Miocene hominid locality Hammerschmiede and remarks on its ecology". Acta Palaeontologica Polonica. 67 (4): 807–826. doi:10.4202/app.00997.2022. S2CID 253929117.
  137. ^ Mörs, T.; Hägglund, S.; Erbajeva, M. A.; Alexeeva, N.; Shchetnikov, A. A.; Daxner-Höck, G. (2022). "The northernmost Eurasian Miocene beavers: Euroxenomys (Castoridae, Mammalia) from Olkhon Island, Lake Baikal (Eastern Siberia)". Palaeobiodiversity and Palaeoenvironments. 102 (4): 873–883. Bibcode:2022PdPe..102..873M. doi:10.1007/s12549-022-00555-x. PMC 9758099. PMID 36540163. S2CID 253950330.
  138. ^ Kelly, T. S.; Martin, R. A. (2022). "Phylogenetic positions of Paronychomys Jacobs and Basirepomys Korth and De Blieux relative to the tribe Neotomini (Rodentia, Cricetidae)". Journal of Paleontology. 96 (3): 692–705. Bibcode:2022JPal...96..692K. doi:10.1017/jpa.2021.121. S2CID 246522323.
  139. ^ Carro-Rodríguez, P. M.; López-Guerrero, P.; Álvarez-Sierra, M. Á.; Oliver, A.; Peláez-Campomanes, P. (2022). "Virtual cranial reconstruction of Hispanomys moralesi (Rodentia, Mammalia) from Cerro de los Batallones (upper Miocene, Spain)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1423–1441. Bibcode:2022HBio...34.1423C. doi:10.1080/08912963.2022.2029430. hdl:10261/267092. S2CID 246524977.
  140. ^ Casanovas-Vilar, I.; Luján, À. H. (2022). "Description of the Type Specimen of the Extinct Tenerife Giant Rat (Canariomys bravoi)". Journal of Mammalian Evolution. 29 (3): 645–661. doi:10.1007/s10914-021-09594-1. S2CID 246976356.
  141. ^ Erbajeva, M. A.; Flynn, L. J.; Daxner-Höck, G. (2022). "The Lagomorpha genus Bohlinotona (Ochotonidae) from the late Oligocene of Mongolia" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 123: 137–155. JSTOR 27121976.
  142. ^ Sen, S.; Pickford, M. (2022). "Red Rock Hares (Leporidae, Lagomorpha) past and present in southern Africa, and a new species of Pronolagus from the early Pleistocene of Angola" (PDF). Communications of the Geological Survey of Namibia. 24: 67–97.
  143. ^ Sehgal, R. K.; Singh, A. P.; Gilbert, C. C.; Patel, B. A.; Campisano, C. J.; Selig, K. R.; Patnaik, R.; Singh, N. P. (2022). "A new genus of treeshrew and other micromammals from the middle Miocene hominoid locality of Ramnagar, Udhampur District, Jammu and Kashmir, India". Journal of Paleontology. 96 (6): 1318–1335. Bibcode:2022JPal...96.1318S. doi:10.1017/jpa.2022.41. S2CID 249138607.
  144. ^ Wood-Bailey, A. P.; Cox, P. G.; Sharp, A. C. (2022). "The evolution of unique cranial traits in leporid lagomorphs". PeerJ. 10. e14414. doi:10.7717/peerj.14414. PMC 9744148. PMID 36518283.
  145. ^ Selig, K. R.; Silcox, M. T. (2022). "Measuring Molarization: Change Through Time in Premolar Function in An Extinct Stem Primate Lineage". Journal of Mammalian Evolution. 29 (4): 947–956. doi:10.1007/s10914-022-09623-7. S2CID 252135941.
  146. ^ a b c Sánchez, I. M.; Abbas, S. G.; Khan, M. A.; Babar, M. A.; Quiralte, V.; DeMiguel, D. (2022). "The first Asian record of the mouse-deer Afrotragulus (Ruminantia, Tragulidae) reassess its evolutionary history and offers insights on the influence of body size on Afrotragulus diversification". Historical Biology: An International Journal of Paleobiology. 34 (8): 1544–1559. Bibcode:2022HBio...34.1544S. doi:10.1080/08912963.2022.2050719. S2CID 250533795.
  147. ^ Peri, E.; Collareta, A.; Aringhieri, G.; Caramella, D.; Foresi, L. M.; Bianucci, G. (2022). "A new physeteroid cetacean from the Lower Miocene of southern Italy: CT imaging, retrodeformation, systematics and palaeobiology of a sperm whale from the Pietra leccese". Bollettino della Società Paleontologica Italiana. 61 (2): 187–206. doi:10.4435/BSPI.2022.15 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  148. ^ Gingerich, P. D.; Amane, A.; Zouhri, S. (2022). "Skull and partial skeleton of a new pachycetine genus (Cetacea, Basilosauridae) from the Aridal Formation, Bartonian middle Eocene, of southwestern Morocco". PLOS ONE. 17 (10): e0276110. Bibcode:2022PLoSO..1776110G. doi:10.1371/journal.pone.0276110. PMC 9604876. PMID 36288346.
  149. ^ Bisconti, M.; Ochoa, D.; Urbina, M.; Salas-Gismondi, R. (2022). "Archaebalaenoptera eusebioi, a new rorqual from the late Miocene of Peru (Cetacea, Mysticeti, Balaenopteridae) and its impact in reconstructing body size evolution, ecomorphology and palaeobiogeography of Balaenopteridae". Journal of Systematic Palaeontology. 19 (16): 1129–1160. doi:10.1080/14772019.2021.2017363. S2CID 247125383.
  150. ^ Wang, S.-Q.; Ye, J.; Meng, J.; Li, C.; Costeur, L.; Mennecart, B.; Zhang, C.; Zhang, J.; Aiglstorfer, M.; Wang, Y.; Wu, Y.; Wu, W.-Y.; Deng, T. (2022). "Sexual selection promotes giraffoid head-neck evolution and ecological adaptation". Science. 376 (6597): eabl8316. doi:10.1126/science.abl8316. PMID 35653459. S2CID 249313002.
  151. ^ Moyà-Solà, S.; Quintana Cardona, J.; Köhler, M. (2022). "Ebusia moralesi n. gen. nov. sp, a new endemic caprine (Bovidae, Mammalia) from the Neogene of Eivissa Island (Balearic Islands, Western Mediterranean): evolutionary implications". Historical Biology: An International Journal of Paleobiology. 34 (8): 1642–1659. Bibcode:2022HBio...34.1642M. doi:10.1080/08912963.2022.2060099. S2CID 250533788.
  152. ^ Greco, Marcelo C.; Trindade Dantas, Mário André; Cozzuol, Mario Alberto (2022-04-13). "A new species of small Camelidae from the Late Pleistocene of Brazil". Journal of Quaternary Science. 37 (7): 1261–1269. Bibcode:2022JQS....37.1261C. doi:10.1002/jqs.3426. ISSN 0267-8179. S2CID 248158891.
  153. ^ a b Kimura, T.; Hasegawa, Y.; Suzuki, T. (2022). "A New Species of Baleen Whale (Isanacetus-Group) from the Early Miocene, Japan". Paleontological Research. 27 (1): 85–101. doi:10.2517/PR210009. S2CID 252684197.
  154. ^ Hernández-Cisneros, A. E. (2022). "A new aetiocetid (Cetacea, Mysticeti, Aetiocetidae) from the late Oligocene of Mexico". Journal of Systematic Palaeontology. 20 (1): Article 2100725. doi:10.1080/14772019.2022.2100725. S2CID 251966097.
  155. ^ Ríos, M.; Abbas, S. G.; Khan, M. A.; Solounias, N. (2022). "Distinction of Sivatherium from Libytherium and a new species of Libytherium (Giraffidae, Ruminantia, Mammalia) from the Siwaliks of Pakistan (Miocene)". Geobios. 74: 67–76. Bibcode:2022Geobi..74...67R. doi:10.1016/j.geobios.2022.06.002. S2CID 251674336.
  156. ^ Wang, S.-Q.; Sun, J.; Li, C.; Li, S.-J.; Fu, J.; Jiangzuo, Q.; Xing, L.; Yang, R. (2022). "Discovery of a fossil dwarf antelope outside of Africa and its implications for the late Miocene ecosystem in the northeast margin of the Tibetan Plateau". Gondwana Research. 113: 102–115. doi:10.1016/j.gr.2022.10.012. S2CID 253219923.
  157. ^ van der Made, J.; Choudhary, D.; Singh, N. P.; Sharma, K. M.; Singh, N. A.; Patnaik, R. (2022). "Listriodon dukkar sp. nov. (Suidae, Artiodactyla, Mammalia) from the late Miocene of Pasuda (Gujarat, India): the decline and extinction of the Listriodontinae". PalZ. 96 (2): 355–383. Bibcode:2022PalZ...96..355V. doi:10.1007/s12542-022-00606-w. hdl:10261/267599. S2CID 247501323.
  158. ^ Kimura, T.; Hasegawa, Y. (2022). "A New Physeteroid from the Lower Miocene of Japan". Paleontological Research. 26 (1): 87–101. doi:10.2517/PR200021. S2CID 245478545.
  159. ^ Ducrocq, S.; Soe, A. N.; Sein, C.; Chaimanee, Y.; Chavasseau, O.; Jaeger, J.-J. (2022). "Neochorlakkia myaingensis n. gen., n. sp., a new Dichobunidae (Mammalia, Cetartiodactyla) from the middle Eocene Pondaung Formation, Myanmar". Comptes Rendus Palevol. 21 (4): 115–122. doi:10.5852/cr-palevol2022v21a4. S2CID 246462041.
  160. ^ Bosselaers, M.; Munsterman, D. K. (2022). "The discovery of a Balaenomorpha (Persufflatius renefraaijeni n. gen., n. sp.) from the upper Miocene of the Netherlands sheds new light on the cranial anatomy of archaic rorqual relatives". Geodiversitas. 44 (30): 933–973. doi:10.5252/geodiversitas2022v44a30. S2CID 253247062.
  161. ^ Lazaridis, G.; Tsoukala, E.; Kostopoulos, D. S. (2022). "Validation of a prematurely abolished new Propotamochoerus Pilgrim, 1925 species (Mammalia, Suidae) from SE Mediterranean". Comptes Rendus Palevol. 21 (26): 531–549. doi:10.5852/cr-palevol2022v21a26. S2CID 251431577.
  162. ^ Bianucci, G.; Geisler, J. H.; Citron, S.; Collareta, A. (2022). "The origins of the killer whale ecomorph". Current Biology. 32 (8): 1843–1851.e2. Bibcode:2022CBio...32E1843B. doi:10.1016/j.cub.2022.02.041. PMID 35259339. S2CID 247256249.
  163. ^ Pickford, M. (2022). "The axial skeleton of Brachyodus onoideus (Mammalia, Anthracotheriidae): taxonomic and functional implications". Spanish Journal of Palaeontology. 37 (1): 35–52. doi:10.7203/sjp.24118. S2CID 248166801.
  164. ^ Solounias, N.; Smith, S.; Rios Ibàñez, M. (2022). "Ua pilbeami: a new taxon of Giraffidae (Mammalia) from the Chinji Formation of Pakistan with phylogenetic proximity to Okapia". Bollettino della Società Paleontologica Italiana. 61 (3): 319–326. doi:10.4435/BSPI.2022.19 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  165. ^ Xiao, H.; Jiao, T.; Hu, T. (2012). "Description of two new species of Odopoia Walker, 1871 (Hymenoptera: Chalcidoidea: Torymidae) from China, with a key to known species". Zootaxa. 3239 (1): 35–42. doi:10.11646/zootaxa.3239.1.2.
  166. ^ Marriott, K.; Prothero, D. R.; Beatty, B. L. (2022). "Systematics of the nothokemadine camels (Artiodactyla: Camelidae)". New Mexico Museum of Natural History and Science Bulletin. 90: 295–302.
  167. ^ Marín-Leyva, A. H.; Delgado-García, S.; García-Zepeda, M. L.; Arroyo-Cabrales, J.; López-García, J. R.; Plata-Ramírez, R. A.; Meléndez-Herrera, E. (2022). "Environmental inferences based on the dietary ecology of camelids from west-central Mexico during the Late Pleistocene". Historical Biology: An International Journal of Paleobiology. 35 (6): 1011–1027. doi:10.1080/08912963.2022.2073822. S2CID 249006415.
  168. ^ Carrasco, T. S.; Scherer, C. S.; Ribeiro, A. M.; Buchmann, F. S. (2022). "Paleodiet of Lamini camelids (Mammalia: Artiodactyla) from the Pleistocene of southern Brazil: insights from stable isotope analysis (δ13C, δ18O)". Paleobiology. 48 (3): 513–526. Bibcode:2022Pbio...48..513C. doi:10.1017/pab.2022.10. S2CID 248140475.
  169. ^ Klementiev, A. M.; Khatsenovich, A. M.; Tserendagva, Y.; Rybin, E. P.; Bazargur, D.; Marchenko, D. V.; Gunchinsuren, B.; Derevianko, A. P.; Olsen, J. W. (2022). "First Documented Camelus knoblochi Nehring (1901) and Fossil Camelus ferus Przewalski (1878) From Late Pleistocene Archaeological Contexts in Mongolia". Frontiers in Earth Science. 10: Article 861163. Bibcode:2022FrEaS..10.1163K. doi:10.3389/feart.2022.861163.
  170. ^ Raza, T.; Yasin, R.; Samiullah, K.; Fazal, R. M.; Hussain, K.; Abbas, A.; Rehman, A.; Ishaq, H. M.; Mehmood, M. (2022). "New collection of fossil remains of pigs (Mammalia: Artiodactyla: Suidae) from the Siwaliks of Pakistan". Historical Biology: An International Journal of Paleobiology. 35 (10): 1855–1870. doi:10.1080/08912963.2022.2124372. S2CID 252553359.
  171. ^ Yang, D.; Pisano, A.; Kolasa, J.; Jashashvili, T.; Kibii, J.; Gomez Cano, A. R.; Viriot, L.; Grine, F. E.; Souron, A. (2022). "Why the long teeth? Morphometric analysis suggests different selective pressures on functional occlusal traits in Plio-Pleistocene African suids". Paleobiology. 48 (4): 655–676. Bibcode:2022Pbio...48..655Y. doi:10.1017/pab.2022.11. S2CID 248328693.
  172. ^ Mennecart, B.; Dziomber, L.; Aiglstorfer, M.; Bibi, F.; DeMiguel, D.; Fujita, M.; Kubo, M. O.; Laurens, F.; Meng, J.; Métais, G.; Müller, B.; Ríos, M.; Rössner, G. E.; Sánchez, I. M.; Schulz, G.; Wang, S.; Costeur, L. (2022). "Ruminant inner ear shape records 35 million years of neutral evolution". Nature Communications. 13 (1). 7222. Bibcode:2022NatCo..13.7222M. doi:10.1038/s41467-022-34656-0. PMC 9726890. PMID 36473836.
  173. ^ Hartung, J.; Böhme, M. (2022). "Unexpected cranial sexual dimorphism in the tragulid Dorcatherium naui based on material from the middle to late Miocene localities of Eppelsheim and Hammerschmiede (Germany)". PLOS ONE. 17 (5): e0267951. Bibcode:2022PLoSO..1767951H. doi:10.1371/journal.pone.0267951. PMC 9116667. PMID 35584185.
  174. ^ Laskos, K.; Kostopoulos, D. S. (2022). "The Vallesian large Palaeotragus Gaudry, 1861 (Mammalia: Giraffidae) from Northern Greece". Geodiversitas. 44 (15): 437–470. doi:10.5252/geodiversitas2022v44a15. S2CID 248300856.
  175. ^ Ríos, M.; Cantero, E.; Estraviz-López, D.; Solounias, N.; Morales, J. (2022). "Anterior ossicone variability in Decennatherium rex Ríos, et al. 2017 (Late Miocene, Iberian Peninsula)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 114 (1–2): 159–165. doi:10.1017/S1755691022000184. S2CID 253040227.
  176. ^ Azanza, B.; Pina, M.; Quiralte, V.; Sánchez, I. M.; DeMiguel, D. (2022). "New fossils of the early Miocene stem-cervid Acteocemas (Artiodactyla, Ruminantia) from the Iberian Peninsula shed light on the evolutionary origin of deer antler regeneration". Historical Biology: An International Journal of Paleobiology. 34 (8): 1520–1533. Bibcode:2022HBio...34.1520A. doi:10.1080/08912963.2022.2050720. S2CID 247512727.
  177. ^ Croitor, R. (2022). "Paleobiogeography of Crown Deer". Earth. 3 (4): 1138–1160. Bibcode:2022Earth...3.1138C. doi:10.3390/earth3040066.
  178. ^ Croitor, R.; Khan, M. A.; Abbas, S. G.; Babar, M. A.; Asim, M.; Akhtar, M. (2022). "Description of new Pliocene to Early Pleistocene deer (Cervidae, Mammalia) remains from the Siwalik Hills in Pakistan with a discussion on paleobiogeography of cervids from the Indian subcontinent". Geobios. 74: 21–41. Bibcode:2022Geobi..74...21C. doi:10.1016/j.geobios.2022.08.001. S2CID 252075996.
  179. ^ Miszkiewicz, J. J.; Van Der Geer, A. A. E. (2022). "Inferring longevity from advanced rib remodelling in insular dwarf deer". Biological Journal of the Linnean Society. 136 (1): 41–58. doi:10.1093/biolinnean/blac018. hdl:1885/294268.
  180. ^ Besiou, E.; Choupa, M. N.; Lyras, G.; van der Geer, A. (2022). "Body mass divergence in sympatric deer species of Pleistocene Crete (Greece)". Palaeontologia Electronica. 25 (2): Article number 25.2.a23. doi:10.26879/1221.
  181. ^ Fu, J.; Zhang, J.; Wang, Y.; Jiangzuo, Q.; Wang, S.-Q. (2022). "Finite element analysis of the hemimandible of the giant deer, Sinomegaceros pachyosteus, revealing its feeding potentialities". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2022.2101368. S2CID 250930319.
  182. ^ Douw, D. S.; Giltaij, T. J.; Kootker, L. M.; Reumer, J. W. F.; Monaghan, N. T.; Schulp, A. S. (2022). "Investigating seasonal mobility in Irish giant deer Megaloceros giganteus (Blumenbach, 1799) through strontium isotope (87Sr/86Sr) analysis". Journal of Quaternary Science. 37 (8): 1348–1358. Bibcode:2022JQS....37.1348D. doi:10.1002/jqs.3447. S2CID 249654469.
  183. ^ Deng, M.-X.; Xiao, B.; Yuan, J.-X.; Hu, J.-M.; Kim, K. S.; Westbury, M. V.; Lai, X.-L.; Sheng, G.-L. (2022). "Ancient Mitogenomes Suggest Stable Mitochondrial Clades of the Siberian Roe Deer". Genes. 13 (1): Article 114. doi:10.3390/genes13010114. PMC 8774404. PMID 35052455.
  184. ^ Xiao, B.; Wang, T.; Lister, A. M.; Yuan, J.; Hu, J.; Song, S.; Lin, H.; Wang, S.; Wang, C.; Wei, D.; Lai, X.; Xing, X.; Sheng, G. (2022). "Ancient and modern mitogenomes of red deer reveal its evolutionary history in northern China". Quaternary Science Reviews. 301. 107924. doi:10.1016/j.quascirev.2022.107924. S2CID 254965620.
  185. ^ Cherin, M.; Breda, M.; Esattore, B.; Hart, V.; Turek, J.; Porciello, F.; Angeli, G.; Holpin, S.; Iurino, D. A. (2022). "A Pleistocene Fight Club revealed by the palaeobiological study of the Dama-like deer record from Pantalla (Italy)". Scientific Reports. 12 (1): Article number 13898. Bibcode:2022NatSR..1213898C. doi:10.1038/s41598-022-18091-1. PMC 9381596. PMID 35974071.
  186. ^ Tseng, Z. J.; Wang, X.; Li, Q.; Xie, G. (2022). "Qurliqnoria (Mammalia: Bovidae) fossils from Qaidam Basin, Tibetan Plateau and deep-time endemism of the Tibetan antelope lineage". Zoological Journal of the Linnean Society. 196 (3): 990–1012. doi:10.1093/zoolinnean/zlab117.
  187. ^ Wang, X.; Li, Q.; Tseng, Z. J. (2022). "Primitive Tibetan antelope, Qurliqnoria hundesiensis (Lydekker, 1881) (Bovidae, Artiodactyla), from Pliocene Zanda and Kunlun Pass basins and paleoenvironmental implications". Journal of Mammalian Evolution. 30: 245–268. doi:10.1007/s10914-022-09632-6. S2CID 253198804.
  188. ^ Vislobokova, I. A. (2022). "On the first finding of Soergelia minor (Artiodactyla, Bovidae) in the Lower Pleistocene of Taurida Cave in the Crimea and the history of the genus Soergelia". Paleontological Journal. 56 (3): 296–304. Bibcode:2022PalJ...56..296V. doi:10.1134/S0031030122030157. S2CID 249627842.
  189. ^ Neto de Carvalho, C.; Muñiz, F.; Cáceres, L. M.; Belaústegui, Z.; Rodríguez-Vidal, J.; Belo, J.; Moreira, N.; Cachão, M.; Cunha, P. P.; Figueiredo, S.; Galán, J. M.; Zhang, Y.; Gómez, P.; Toscano, A.; Ruiz, F.; Ramírez-Cruzado, S.; Giles-Guzmán, F.; Finlayson, G.; Finlayson, S.; Finlayson, C. (2022). "Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene". Scientific Reports. 12 (1): Article number 9911. Bibcode:2022NatSR..12.9911D. doi:10.1038/s41598-022-14137-6. PMC 9198092. PMID 35701579.
  190. ^ Sileem, A. H.; Abu El-Kheir, G. A. (2022). "Complete skull of Bothriogenys fraasi (Mammalia, Artiodactyla, Anthracotheriidae) from the Early Oligocene, Fayum, Egypt". Geological Journal. 57 (11): 4833–4841. Bibcode:2022GeolJ..57.4833S. doi:10.1002/gj.4574. S2CID 252244244.
  191. ^ Pickford, M.; MacLaren, J. A. (2022). "The most complete skull of Brachyodus onoideus (Anthracotheriidae), Liège University collections". Historical Biology: An International Journal of Paleobiology. 34 (8): 1480–1493. Bibcode:2022HBio...34.1480P. doi:10.1080/08912963.2022.2043291. S2CID 247347878.
  192. ^ Prothero, D. R.; Marriott, K.; Welsh, E. (2022). "A review of the American anthracotheres (Mammalia: Artiodactyla)". New Mexico Museum of Natural History and Science Bulletin. 90: 339–354.
  193. ^ Rivals, F.; Belyaev, R. I.; Basova, V. B.; Prilepskaya, N. E. (2022). "Hogs, hippos or bears? Paleodiet of European Oligocene anthracotheres and entelodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 611. 111363. doi:10.1016/j.palaeo.2022.111363. S2CID 254801829.
  194. ^ Martínez-Navarro, B.; Pandolfi, L.; Medin, T.; Libsekal, Y.; Ghinassi, M.; Papini, M.; Rook, L. (2022). "The ontogenetic pattern of Hippopotamus gorgops Dietrich, 1928 revealed by a juvenile cranium from the one-million-years-old paleoanthropological site of Buia (Eritrea)". Comptes Rendus Palevol. 21 (7): 157–173. doi:10.5852/cr-palevol2022v21a7. hdl:2158/1258116. S2CID 247074199.
  195. ^ Georgitsis, M. K.; Liakopoulou, D. E.; Theodorou, G. E.; Tsiolakis, E. (2022). "Functional morphology of the hindlimb of fossilized pygmy hippopotamus from Ayia Napa (Cyprus)". Journal of Morphology. 283 (8): 1048–1079. doi:10.1002/jmor.21488. PMID 35708268. S2CID 249709335.
  196. ^ Coombs, E. J.; Felice, R. N.; Clavel, J.; Park, T.; Bennion, R. F.; Churchill, M.; Geisler, J. H.; Beatty, B.; Goswami, A. (2022). "The tempo of cetacean cranial evolution". Current Biology. 32 (10): 2233–2247.e4. Bibcode:2022CBio...32E2233C. doi:10.1016/j.cub.2022.04.060. PMID 35537454. S2CID 248574938.
  197. ^ Peredo, C. M.; Pyenson, N.; Uhen, M. D. (2022). "Lateral palatal foramina do not indicate baleen in fossil whales". Scientific Reports. 12 (1). 11448. Bibcode:2022NatSR..1211448P. doi:10.1038/s41598-022-15684-8. PMC 9259611. PMID 35794235.
  198. ^ Ekdale, E. G.; El Adli, J. J.; McGowen, M. R.; Deméré, T. A.; Lanzetti, A.; Berta, A.; Springer, M. S.; Boessenecker, R. W.; Gatesy, J. (2024). "Lateral palatal foramina are not widespread in Artiodactyla and imply baleen in extinct mysticetes". Scientific Reports. 14 (1). 10174. Bibcode:2024NatSR..1410174E. doi:10.1038/s41598-024-60673-8. PMC 11068900. PMID 38702346.
  199. ^ Dungan, S. Z.; Chang, B. S. W. (2022). "Ancient whale rhodopsin reconstructs dim-light vision over a major evolutionary transition: Implications for ancestral diving behavior". Proceedings of the National Academy of Sciences of the United States of America. 119 (27): e2118145119. Bibcode:2022PNAS..11918145D. doi:10.1073/pnas.2118145119. PMC 9271160. PMID 35759662.
  200. ^ Bennion, R. F.; MacLaren, J. A.; Coombs, E. J.; Marx, F. G.; Lambert, O.; Fischer, V. (2022). "Convergence and constraint in the cranial evolution of mosasaurid reptiles and early cetaceans". Paleobiology. 49 (2): 215–231. doi:10.1017/pab.2022.27. hdl:10067/1900440151162165141. S2CID 251756101.
  201. ^ Chakraborty, S.; Sengupta, D. P. (2022). "A new skull of early cetacean Remingtonocetus harudiensis from the Eocene of Kutch Basin, India". Palaeoworld. 32 (3): 509–522. doi:10.1016/j.palwor.2022.11.002. S2CID 253492805.
  202. ^ Tarasenko, K. K. (2022). "First Record of Basilosauridae (Mammalia, Cetacea) in the Eocene of the Krasnodar Territory (Apsheron District, Gorny Luch)". Doklady Biological Sciences. 502 (1): 11–14. doi:10.1134/S0012496622010094. PMID 35298747. S2CID 247521498.
  203. ^ Corrie, J. E.; Fordyce, R. E. (2022). "A redescription and re-evaluation of Kekenodon onamata (Mammalia: Cetacea), a late-surviving archaeocete from the Late Oligocene of New Zealand". Zoological Journal of the Linnean Society. 196 (4): 1637–1670. doi:10.1093/zoolinnean/zlac019.
  204. ^ Boessenecker, R. W. (2022). "Oligocene-Miocene marine mammals from Belgrade Quarry, North Carolina". Geobios. 74: 1–19. Bibcode:2022Geobi..74....1B. doi:10.1016/j.geobios.2022.08.002. S2CID 252077178.
  205. ^ Lambert, O.; Wanzenböck, G.; Pfaff, C.; Louwye, S.; Kriwet, J.; Marx, F. G. (2022). "First eurhinodelphinid dolphin from the Paratethys reveals a new family of specialised echolocators". Historical Biology: An International Journal of Paleobiology. 35 (7): 1074–1091. doi:10.1080/08912963.2022.2077645. S2CID 249581934.
  206. ^ Tanaka, Y.; Ortega, M.; Fordyce, R. E. (2023). "A new early Miocene archaic dolphin (Odontoceti, Cetacea) from New Zealand, and brain evolution of the Odontoceti". New Zealand Journal of Geology and Geophysics. 66 (1): 59–73. Bibcode:2023NZJGG..66...59T. doi:10.1080/00288306.2021.2021956. S2CID 246053209.
  207. ^ Viglino, M.; Buono, M. R.; Tanaka, Y.; Cuitiño, J. I.; Fordyce, R. E. (2022). "Unravelling the identity of the platanistoid Notocetus vanbenedeni Moreno, 1892 (Cetacea, Odontoceti) from the early Miocene of Patagonia (Argentina)". Journal of Systematic Palaeontology. 20 (1): Article 2082890. Bibcode:2022JSPal..2082890V. doi:10.1080/14772019.2022.2082890. S2CID 251825488.
  208. ^ Citron, C.; Geisler, J. H.; Collareta, A.; Caramella, D. (2022). "Systematics, phylogeny and feeding behavior of the oldest killer whale: a reappraisal of Orcinus citoniensis (Capellini, 1883) from the Pliocene of Tuscany (Italy)". Bollettino della Società Paleontologica Italiana. 61 (2): 167–186. doi:10.4435/BSPI.2022.13 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  209. ^ Benites-Palomino, A.; Velez-Juarbe, J.; Altamirano-Sierra, A.; Collareta, A.; Carrillo-Briceño, J. D.; Urbina, M. (2022). "Sperm whales (Physeteroidea) from the Pisco Formation, Peru, and their trophic role as fat sources for late Miocene sharks". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220774. doi:10.1098/rspb.2022.0774. PMC 9240678. PMID 35765834.
  210. ^ Aguirre-Fernández, G.; Jost, J.; Hilfiker, S. (2022). "First records of extinct kentriodontid and squalodelphinid dolphins from the Upper Marine Molasse (Burdigalian age) of Switzerland and a reappraisal of the Swiss cetacean fauna". PeerJ. 10: e13251. doi:10.7717/peerj.13251. PMC 9119297. PMID 35602890.
  211. ^ Merella, M.; Collareta, A.; Granata, V.; Casati, S.; Bianucci, G. (2022). "New remains of Casatia thermophila (Cetacea, Monodontidae) from the Lower Pliocene marine vertebrate-bearing locality of Arcille (Tuscany, Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 229–240. doi:10.54103/2039-4942/15459. hdl:11568/1168945. S2CID 248910065.
  212. ^ Bisconti, M.; Carnevale, G. (2022). "Skeletal Transformations and the Origin of Baleen Whales (Mammalia, Cetacea, Mysticeti): A Study on Evolutionary Patterns". Diversity. 14 (3): Article 221. doi:10.3390/d14030221.
  213. ^ Tanaka, Y. (2022). "Rostrum morphology and feeding strategy of the baleen whale indicate that right whales and pygmy right whales became skimmers independently". Royal Society Open Science. 9 (11). 221353. Bibcode:2022RSOS....921353T. doi:10.1098/rsos.221353. PMC 9682309. PMID 36425522.
  214. ^ Bisconti, M.; Raineri, G.; Tartarelli, G.; Monegatti, P.; Carnevale, G. (2022). "The periotic of a basal balaenopterid from the Tortonian of the Stirone River, northern Italy (Cetacea, Mysticeti, Balaenopteridae)". Palaeobiodiversity and Palaeoenvironments. 103 (3): 663–679. doi:10.1007/s12549-022-00550-2. S2CID 253725537.
  215. ^ Gatesy, J.; Ekdale, E. G.; Deméré, T. A.; Lanzetti, A.; Randall, J.; Berta, A.; El Adli, J. J.; Springer, M. S.; McGowen, M. R. (2022). "Anatomical, Ontogenetic, and Genomic Homologies Guide Reconstructions of the Teeth-to-Baleen Transition in Mysticete Whales". Journal of Mammalian Evolution. 29 (4): 891–930. doi:10.1007/s10914-022-09614-8. S2CID 247439651.
  216. ^ a b Jiangzuo, Q.; Werdelin, L.; Sun, Y. (2022). "A dwarf sabertooth cat (Felidae: Machairodontinae) from Shanxi, China, and the phylogeny of the sabertooth tribe Machairodontini". Quaternary Science Reviews. 284: Article 107517. Bibcode:2022QSRv..28407517J. doi:10.1016/j.quascirev.2022.107517.
  217. ^ Jiangzuo, Q.; Spassov, N. (2022). "A late Turolian giant panda from Bulgaria and the early evolution and dispersal of the panda lineage". Journal of Vertebrate Paleontology. 42 (1): e2054718. Bibcode:2022JVPal..42E4718J. doi:10.1080/02724634.2021.2054718. S2CID 251241607.
  218. ^ Valenciano, A.; Morales, J.; Azanza, B.; Demiguel, D. (2022). "Aragonictis araid, gen. et sp. nov., a small-sized hypercarnivore (Carnivora, Mustelidae) from the late middle Miocene of the Iberian Peninsula (Spain)". Journal of Vertebrate Paleontology. 41 (5): e2005615. doi:10.1080/02724634.2021.2005615. S2CID 248556936.
  219. ^ Fourvel, Jean-Baptiste; Frerebeau, Nicolas (2022). "A new canid species (Carnivora: Canidae) from the Plio-Pleistocene hominin-bearing site of Kromdraai (Cradle of Humankind, Gauteng, SouthAfrica)". Paläontologische Zeitschrift. 97: 163–177. doi:10.1007/s12542-022-00628-4. S2CID 251042977.
  220. ^ Kargopoulos, N.; Valenciano, A.; Abella, J.; Kampouridis, P.; Lechner, T.; Böhme, M. (2022). "The exceptionally high diversity of small carnivorans from the Late Miocene hominid locality of Hammerschmiede (Bavaria, Germany)". PLOS ONE. 17 (7): e0268968. Bibcode:2022PLoSO..1768968K. doi:10.1371/journal.pone.0268968. PMC 9278789. PMID 35830447.
  221. ^ Grohé, C.; Uno, K.; Boisserie, J.-R. (2022). "Lutrinae Bonaparte, 1838 (Carnivora, Mustelidae) from the Plio-Pleistocene of the Lower Omo Valley, southwestern Ethiopia: systematics and new insights into the paleoecology and paleobiogeography of the Turkana otters". Comptes Rendus Palevol. 21 (30): 681–705. doi:10.5852/cr-palevol2022v21a30. S2CID 252106648.
  222. ^ a b Hafed, A. B.; Nance, J. R.; Koretsky, I. A.; Rahmat, S. J. (2022). "New seal mandibles belonging to the subfamilies Monachinae and Phocinae discovered in the Neogene of North Carolina (USA)". Historical Biology: An International Journal of Paleobiology. 35 (5): 705–720. doi:10.1080/08912963.2022.2063053. S2CID 248248801.
  223. ^ Jiangzuo, Q.; Li, S.; Fu, J.; Wang, S.; Ji, X.; Duan, M.; Che, D. (2022). "Fossil Felidae (Carnivora: Mammalia) from the Yuanmou hominid site, southern China (Late Miocene) and its significance in the living environment of the fossil ape". Zoological Journal of the Linnean Society. 196 (3): 1156–1174. doi:10.1093/zoolinnean/zlab116.
  224. ^ Jianzuo, Q.; Li, L.; Madurell-Malapeira, J.; Wang, S.; Li, S.; Fu, J.; Chen, S. (2022). "The diversification of the lynx lineage during the Plio-Pleistocene—evidence from a new small Lynx from Longdan, Gansu Province, China". Biological Journal of the Linnean Society. 136 (4): 536–551. doi:10.1093/biolinnean/blac054.
  225. ^ a b Morales, J.; Pickford, M. (2022). "The taxonomic status of "Ysengrinia" ginsburgi Morales et al. 1998 (Amphicyonidae, Carnivora) from the basal middle Miocene of Arrisdrift, Namibia" (PDF). Communications of the Geological Survey of Namibia. 24: 1–16.
  226. ^ Valenciano, A.; Baskin, J. (2022). "Moralesictis intrepidus gen. et sp. nov., the long journey of a Miocene honey badger's relative to the New World". Historical Biology: An International Journal of Paleobiology. 34 (8): 1413–1422. Bibcode:2022HBio...34.1413V. doi:10.1080/08912963.2021.2023138. S2CID 245949837.
  227. ^ Deshmukh, U. B.; Valenciano, A. (2014). "Neoyunnanotherium nom. nov., a replacement name for the genus Yunnanotherium Qi, 2014 (Carnivora, Mephitidae) non Han, 1986 (Tragulidae)". Zootaxa. 5222 (3): 298–300. doi:10.11646/zootaxa.5222.3.7. PMID 37044523. S2CID 254922038.
  228. ^ Tarasenko, K. K. (2022). "A New Seal Species of the Genus Pachyphoca (Cystophorinae, Phocidae) from the Late Miocene of the North Caucasus". Doklady Earth Sciences. 507 (1): 916–919. Bibcode:2022DokES.507..916T. doi:10.1134/S1028334X22600621. S2CID 254020349.
  229. ^ Poust, A. W.; Barrett, P. Z.; Tomiya, S. (2022). "An early nimravid from California and the rise of hypercarnivorous mammals after the middle Eocene climatic optimum". Biology Letters. 18 (10). 20220291. doi:10.1098/rsbl.2022.0291. hdl:2433/276689. PMC 9554728. S2CID 252818430.
  230. ^ Jiangzuo, Q.; Wang, Y.; Ge, J.; Liu, S.; Song, Y.; Jin, C.; Jiang, H.; Liu, J. (2023). "Discovery of jaguar from northeastern China middle Pleistocene reveals an intercontinental dispersal event". Historical Biology: An International Journal of Paleobiology. 35 (3): 293–302. Bibcode:2023HBio...35..293J. doi:10.1080/08912963.2022.2034808. S2CID 246693903.
  231. ^ Hemmer, H. (2022). "The identity of the "lion", Panthera principialis sp. nov., from the Pliocene Tanzanian site of Laetoli and its significance for molecular dating the pantherine phylogeny, with remarks on Panthera shawi (Broom, 1948), and a revision of Puma incurva (Ewer, 1956), the Early Pleistocene Swartkrans "leopard" (Carnivora, Felidae)". Palaeobiodiversity and Palaeoenvironments. 103 (2): 465–487. doi:10.1007/s12549-022-00542-2.
  232. ^ Hemmer, H. (2022). "An intriguing find of an early Middle Pleistocene European snow leopard, Panthera uncia pyrenaica ssp. nov. (Mammalia, Carnivora, Felidae), from the Arago cave (Tautavel, Pyrénées-Orientales, France)". Palaeobiodiversity and Palaeoenvironments. 103: 207–220. doi:10.1007/s12549-021-00514-y. S2CID 246433218.
  233. ^ Wallace, S. C.; Lyon, L. M. (2021). "Systematic revision of the Ailurinae (Mammalia: Carnivora: Ailuridae): with a new species from North America". In Angela R. Glatston (ed.). Red Panda. Biology and Conservation of the First Panda (second ed.). Academic Press. pp. 31–52. doi:10.1016/B978-0-12-823753-3.00011-9. ISBN 978-0-12-823753-3. S2CID 243818007.
  234. ^ a b c Jiangzuo, Q.; Niu, K.; Li, S.; Fu, J.; Wang, S. (2022). "A Diverse Metailurine Guild from the Latest Miocene Xingjiawan Fauna, Yongdeng, Northwestern China, and Generic Differentiation of Metailurine Felids". Journal of Mammalian Evolution. 29 (4): 845–862. doi:10.1007/s10914-022-09622-8. S2CID 252662658.
  235. ^ Xiong, W. (2022). "New species of Percrocuta (Carnivora, Hyaenidae) from the early middle Miocene of Tongxin, China". Historical Biology: An International Journal of Paleobiology. 35 (5): 799–820. doi:10.1080/08912963.2022.2067757. S2CID 248627038.
  236. ^ Ruiz-Ramoni, D.; Wang, X.; Rincón, A. D. (2022). "Canids (Caninae) from the past of Venezuela". Ameghiniana. 59 (1): 97–116. doi:10.5710/AMGH.16.09.2021.3448. S2CID 240576546.
  237. ^ Solé, F.; Lesport, J.-F.; Heitz, A.; Mennecart, B. (2022). "A new gigantic carnivore (Carnivora, Amphicyonidae) from the late middle Miocene of France". PeerJ. 10: e13457. doi:10.7717/peerj.13457. PMC 9206431. PMID 35726261.
  238. ^ Bartolini-Lucenti, S.; Madurell-Malapeira, J.; Rook, L. (2022). "The carnivorans from Cava Monticino (Faenza, Italy; Messinian) revisited". Historical Biology: An International Journal of Paleobiology. 34 (8): 1458–1470. Bibcode:2022HBio...34.1458B. doi:10.1080/08912963.2022.2042806. S2CID 247164581.
  239. ^ Koufos, G. D.; Tamvakis, A. (2022). "Revising the Villafranchian carnivoran fauna from Libakos (Macedonia, Greece) with some implications for its age". Historical Biology: An International Journal of Paleobiology. 34 (8): 1399–1412. Bibcode:2022HBio...34.1399K. doi:10.1080/08912963.2021.2024179. S2CID 245920336.
  240. ^ Sablin, M. V.; Iltsevich, K. Yu. (2022). "Early Pleistocene Caniformia from Palan-Tyukan (Azerbaijan)". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 326 (2): 47–58. doi:10.31610/trudyzin/2022.326.2.47. S2CID 250096512.
  241. ^ Iltsevich, K. Yu.; Sablin, M. V. (2022). "Early Pleistocene Feliformia from Palan-Tyukan (Azerbaijan)". Historical Biology: An International Journal of Paleobiology. 35 (10): 1950–1957. doi:10.1080/08912963.2022.2130287. S2CID 250096512.
  242. ^ Courtenay, L. A.; Yravedra, J.; Herranz-Rodrigo, D.; Rodríguez-Alba, J. J.; Serrano-Ramos, A.; Estaca-Gómez, V.; González-Aguilera, D.; Solano, J. A.; Jiménez-Arenas, J. M. (2022). "Deciphering carnivoran competition for animal resources at the 1.46 Ma early Pleistocene site of Barranco León (Orce, Granada, Spain)". Quaternary Science Reviews. 300. 107912. doi:10.1016/j.quascirev.2022.107912. S2CID 254528449.
  243. ^ Konidaris, G. E. (2022). "Guilds of large carnivorans during the Pleistocene of Europe: a community structure analysis based on foraging strategies". Lethaia. 55 (2): 1–18. Bibcode:2022Letha..55..2.5K. doi:10.18261/let.55.2.5. S2CID 252129769.
  244. ^ Dickinson, E.; Elminowski, E. E.; Flores, D.; Eldridge, E. I.; Granatosky, M. C.; Hartstone-Rose, A. (2022). "A morphological analysis of carnivoran ossicles from Rancho La Brea". Journal of Morphology. 283 (10): 1337–1349. doi:10.1002/jmor.21506. PMC 9826070. PMID 36041006. S2CID 251932519.
  245. ^ van der Hoek, J.; Karabaşoğlu, A.; Mayda, S.; van den Hoek Ostende, L. W. (2022). "Caught in travertine: computed tomography reveals the youngest record of Amphicyon giganteus from the travertine deposits of Karacalar (late middle Miocene, central Anatolia, Turkey)". PalZ. 96 (2): 385–402. Bibcode:2022PalZ...96..385V. doi:10.1007/s12542-022-00610-0. PMC 8857634. PMID 35221381.
  246. ^ Bōgner, E.; Samuels, J. X. (2022). "The first canid from the Gray Fossil Site in Tennessee: new perspective on the distribution and ecology of Borophagus". Journal of Paleontology. 96 (6): 1379–1389. Bibcode:2022JPal...96.1379B. doi:10.1017/jpa.2022.46. S2CID 251086099.
  247. ^ Tamvakis, A.; Savvidou, A.; Spassov, N.; Youlatos, D.; Merceron, G.; Kostopoulos, D. S. (2022). "New insights on Early Pleistocene Nyctereutes from the Balkans based on material from Dafnero-3 (Greece) and Varshets (Bulgaria)". Palaeoworld. 32 (3): 555–572. doi:10.1016/j.palwor.2022.09.006. S2CID 252628366.
  248. ^ Jiangzuo, Q.; Wang, Y.; Song, Y.; Liu, S.; Jin, C.; Liu, J. (2022). "Middle Pleistocene Xenocyon lycaonoides Kretzoi, 1938 in northeastern China and the evolution of Xenocyon-Lycaon lineage". Historical Biology: An International Journal of Paleobiology (in press): 1–13. doi:10.1080/08912963.2021.2022138.
  249. ^ Prassack, K. A.; Walkup, L. C. (2022). "Maybe So, Maybe Not: Canis lepophagus at Hagerman Fossil Beds National Monument, Idaho, USA". Journal of Mammalian Evolution. 29 (2): 313–333. doi:10.1007/s10914-021-09591-4. S2CID 245617373.
  250. ^ Iurino, D. A.; Mecozzi, B.; Iannucci, A.; Moscarella, A.; Strani, F.; Bona, F.; Gaeta, M.; Sardella, R. (2022). "A Middle Pleistocene wolf from central Italy provides insights on the first occurrence of Canis lupus in Europe". Scientific Reports. 12 (1): Article number 2882. Bibcode:2022NatSR..12.2882I. doi:10.1038/s41598-022-06812-5. PMC 8881584. PMID 35217686.
  251. ^ Diedrich, C. G. (2022). "Eurasian Grey and White wolf ancestors—800,000 years evolution, adaptation, pathologies and European dog origins". Acta Zoologica. 105: 25–37. doi:10.1111/azo.12451. S2CID 254340729.
  252. ^ Bergström, A.; Stanton, D. W. G.; Taron, U. H.; Frantz, L.; Sinding, M.-H. S.; Ersmark, E.; Pfrengle, S.; Cassatt-Johnstone, M.; Lebrasseur, O.; Girdland-Flink, L.; Fernandes, D. M.; Ollivier, M.; Speidel, L.; Gopalakrishnan, S.; Westbury, M. V.; Ramos-Madrigal, J.; Feuerborn, T. R.; Reiter, E.; Gretzinger, J.; Münzel, S. C.; Swali, P.; Conard, N. J.; Carøe, C.; Haile, J.; Linderholm, A.; Androsov, S.; Barnes, I.; Baumann, C.; Benecke, N.; Bocherens, H.; Brace, S.; Carden, R. F.; Drucker, D. G.; Fedorov, S.; Gasparik, M.; Germonpré, M.; Grigoriev, S.; Groves, P.; Hertwig, S. T.; Ivanova, V. V.; Janssens, L.; Jennings, R. P.; Kasparov, A. K.; Kirillova, I. V.; Kurmaniyazov, I.; Kuzmin, Y. V.; Kosintsev, P. A.; Lázničková-Galetová, M.; Leduc, C.; Nikolskiy, P.; Nussbaumer, M.; O'Drisceoil, C.; Orlando, L.; Outram, A.; Pavlova, E. Y.; Perri, A. R.; Pilot, M.; Pitulko, V. V.; Plotnikov, V. V.; Protopopov, A. V.; Rehazek, A.; Sablin, M.; Seguin-Orlando, A.; Storå, J.; Verjux, C.; Zaibert, V. F.; Zazula, G.; Crombé, P.; Hansen, A. J.; Willerslev, E.; Leonard, J. A.; Götherström, A.; Pinhasi, R.; Schuenemann, V. J.; Hofreiter, M.; Gilbert, M. T. P.; Shapiro, B.; Larson, G.; Krause, J.; Dalén, L.; Skoglund, P. (2022). "Grey wolf genomic history reveals a dual ancestry of dogs". Nature. 607 (7918): 313–320. Bibcode:2022Natur.607..313B. doi:10.1038/s41586-022-04824-9. PMC 9279150. PMID 35768506.
  253. ^ Segawa, T.; Yonezawa, T.; Mori, H.; Kohno, A.; Kudo, Y.; Akiyoshi, A.; Wu, J.; Tokanai, F.; Sakamoto, M.; Kohno, N.; Nishihara, H. (2022). "Paleogenomics reveals independent and hybrid origins of two morphologically distinct wolf lineages endemic to Japan". Current Biology. 32 (11): 2494–2504.e5. Bibcode:2022CBio...32E2494S. doi:10.1016/j.cub.2022.04.034. PMID 35537455. S2CID 248574954.
  254. ^ Savvidou, A.; Youlatos, D.; Spassov, N.; Tamvakis, A.; Kostopoulos, D. S. (2022). "Ecomorphology of the Early Pleistocene Badger Meles dimitrius from Greece". Journal of Mammalian Evolution. 29 (3): 585–607. doi:10.1007/s10914-022-09609-5. S2CID 248077620.
  255. ^ Wang, X.; Su, D. F.; Jablonski, N. G.; Ji, X.; Kelley, J.; Flynn, L. J.; Deng, T. (2022). "Earliest giant panda false thumb suggests conflicting demands for locomotion and feeding". Scientific Reports. 12 (1): Article number 10538. Bibcode:2022NatSR..1210538W. doi:10.1038/s41598-022-13402-y. PMC 9246853. PMID 35773284.
  256. ^ Hu, HQ; Tong, HW; Shao, QF; Wei, GB; Yu, HD; Shi, JS; Wang, XQ; Xiong, C.; Lin, Y.; Li, N.; Wei, ZY; Wang, P.; Jiangzuo, QG (2022). "New remains of Ailuropoda melanoleuca baconi from Yanjinggou, China: Throwing light on the evolution of giant pandas during the Pleistocene". Journal of Mammalian Evolution. 30: 137–154. doi:10.1007/s10914-022-09637-1. S2CID 254482802.
  257. ^ Gimranov, D.; Lavrov, A.; Prat-Vericat, M.; Madurell-Malapeira, J.; Lopatin, A. V. (2022). "Ursus etruscus from the late Early Pleistocene of the Taurida сave (Crimean Peninsula)". Historical Biology: An International Journal of Paleobiology. 35 (6): 843–856. doi:10.1080/08912963.2022.2067993. S2CID 248788707.
  258. ^ Gimranov, D.; Bocherens, H.; Kavcik-Graumann, N.; Nagel, D.; Rabeder, G. (2023). "The cave bears from Imanay Cave (Southern Urals, Russia)". Historical Biology: An International Journal of Paleobiology. 35 (4): 580–588. Bibcode:2023HBio...35..580G. doi:10.1080/08912963.2022.2056837. S2CID 247823207.
  259. ^ Gimranov, D. O.; Zykov, S. V.; Kosintsev, P. A. (2022). "First Data on Non-occlusal Surface Incisor Microwear of Cave Bears from the Urals". Doklady Biological Sciences. 503 (1): 51–53. doi:10.1134/S0012496622020028. PMID 35437734. S2CID 248242327.
  260. ^ Gimranov, D. O.; Kosintsev, P. A. (2022). "Cave Bears (Ursus spelaeus sensu lato) of the Urals". Paleontological Journal. 56 (1): 97–105. Bibcode:2022PalJ...56...97G. doi:10.1134/S0031030122010063. S2CID 248132602.
  261. ^ Prilepskaya, N. E.; Bachura, O. P.; Baryshnikov, G. F. (2022). "Season-of-death and age-at-death of the easternmost European cave bears: Cementum and dentine increment analysis provides new insight into the cave bear ecology". Boreas. 51 (4): 810–823. Bibcode:2022Borea..51..810P. doi:10.1111/bor.12590. S2CID 248793491.
  262. ^ Molodtseva, A. S.; Makunin, A. I.; Salomashkina, V. V.; Kichigin, I. G.; Vorobieva, N. V.; Vasiliev, S. K.; Shunkov, M. V.; Tishkin, A. A.; Grushin, S. P.; Anijalg, P.; Tammeleht, E.; Keis, M.; Boeskorov, G. G.; Mamaev, N.; Okhlopkov, I. M.; Kryukov, A. P.; Lyapunova, E. A.; Kholodova, M. V.; Seryodkin, I. V.; Saarma, U.; Trifonov, V. A.; Graphodatsky, A. S. (2022). "Phylogeography of ancient and modern brown bears from eastern Eurasia". Biological Journal of the Linnean Society. 135 (4): 722–733. doi:10.1093/biolinnean/blac009. PMC 8943912. PMID 35359699.
  263. ^ Crockford, S. J. (2022). "Polar Bear Fossil and Archaeological Records from the Pleistocene and Holocene in Relation to Sea Ice Extent and Open Water Polynyas". Open Quaternary. 8: Article 7. doi:10.5334/oq.107.
  264. ^ Lan, T.; Leppälä, K.; Tomlin, C.; Talbot, S. L.; Sage, G. K.; Farley, S. D.; Shideler, R. T.; Bachmann, L.; Wiig, Ø.; Albert, V. A.; Salojärvi, J.; Mailund, T.; Drautz-Moses, D. I.; Schuster, S. C.; Herrera-Estrella, L.; Lindqvist, C. (2022). "Insights into bear evolution from a Pleistocene polar bear genome". Proceedings of the National Academy of Sciences of the United States of America. 119 (24): e2200016119. Bibcode:2022PNAS..11900016L. doi:10.1073/pnas.2200016119. PMC 9214488. PMID 35666863.
  265. ^ Wang, M.-S.; Murray, G. G. R.; Mann, D.; Groves, P.; Vershinina, A. O.; Supple, M. A.; Kapp, J. D.; Corbett-Detig, R.; Crump, S. E.; Stirling, I.; Laidre, K. L.; Kunz, M.; Dalén, L.; Green, R. E.; Shapiro, B. (2022). "A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears". Nature Ecology & Evolution. 6 (7): 936–944. Bibcode:2022NatEE...6..936W. doi:10.1038/s41559-022-01753-8. PMID 35711062. S2CID 249747066.
  266. ^ Kubiak, C.; Grimes, V.; Van Biesen, G.; Keddie, G.; Buckley, M.; Macdonald, R.; Richards, M. P. (2022). "Dietary niche separation of three Late Pleistocene bear species from Vancouver Island, on the Pacific Northwest Coast of North America" (PDF). Journal of Quaternary Science. 38: 8–20. doi:10.1002/jqs.3451. S2CID 250134103.
  267. ^ Gardin, A.; Salesa, M. J.; Siliceo, G.; Antón, M.; Pastor, J. F.; de Bonis, L. (2022). "The hindlimb of Amphicynodon leptorhynchus from the lower Oligocene of the Quercy Phosphorites (France): Highlight of new climbing adaptations of this early arctoid". Journal of Mammalian Evolution. 29 (4): 815–843. doi:10.1007/s10914-022-09621-9. S2CID 251862008.
  268. ^ Modafferi, M.; Melchionna, M.; Castiglione, S.; Tamagnini, D.; Maiorano, L.; Sansalone, G.; Profico, A.; Girardi, G.; Raia, P. (2022). "One among many: the enigmatic case of the Miocene mammal, Kolponomos newportensis". Biological Journal of the Linnean Society. 136 (3): 477–487. doi:10.1093/biolinnean/blac052.
  269. ^ Valenzuela-Toro, A. M.; Pyenson, N. D. (2022). "New seal (Carnivora, Phocidae) record from the late Miocene-Pliocene of Guafo Island, southern Chile". Ameghiniana. 59 (5): 355–365. doi:10.5710/AMGH.06.07.2022.3498. S2CID 250403877.
  270. ^ Vanishvili, N. (2022). "The smallest late Miocene phocine from the Southern Caucasus and the Eastern Paratethys seal community crisis". Historical Biology: An International Journal of Paleobiology. 36: 1–12. doi:10.1080/08912963.2022.2151365. S2CID 254516708.
  271. ^ Famoso, N. A.; Orcutt, M. (2022). "First occurrences of Palaeogale von Meyer, 1846 in the Pacific Northwest, United States". Geodiversitas. 44 (14): 427–436. doi:10.5252/geodiversitas2022v44a14. S2CID 248235332.
  272. ^ de Bonis, L.; Grohé, C.; Surault, J.; Gardin, A. (2022). "Description of the first cranium and endocranial structures of Stenoplesictis minor (Mammalia, Carnivora), an early aeluroid from the Oligocene of the Quercy Phosphorites (southwestern France)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1672–1684. Bibcode:2022HBio...34.1672D. doi:10.1080/08912963.2022.2045980. S2CID 248580144.
  273. ^ Jiangzuo, Q.; Liu, J.; Jiang, H.; Wang, Y. (2022). "A huge Pachycrocuta from the Middle Pleistocene loess in Luoning County, central China, and the evolution of mandible within Pliocrocuta-Pachycrocuta lineage". Historical Biology: An International Journal of Paleobiology (in press): 1–7. doi:10.1080/08912963.2022.2056839. S2CID 247885999.
  274. ^ Lewis, M. E.; Werdelin, L. (2022). "A revision of the genus Crocuta (Mammalia, Hyaenidae)". Palaeontographica Abteilung A. 322 (1–4): 1–115. Bibcode:2022PalAA.322....1L. doi:10.1127/pala/2022/0120. S2CID 247534782.
  275. ^ Rivals, F.; Baryshnikov, G. F.; Prilepskaya, N. E.; Belyaev, R. I. (2022). "Diet and ecological niches of the Late Pleistocene hyenas Crocuta spelaea and C. ultima ussurica based on a study of tooth microwear". Palaeogeography, Palaeoclimatology, Palaeoecology. 601: Article 111125. Bibcode:2022PPP...60111125R. doi:10.1016/j.palaeo.2022.111125. S2CID 249967553.
  276. ^ Chatar, N.; Fischer, V.; Tseng, Z. J. (2022). "Many-to-one function of cat-like mandibles highlights a continuum of sabre-tooth adaptations". Proceedings of the Royal Society B: Biological Sciences. 289 (1988). 20221627. doi:10.1098/rspb.2022.1627. PMC 9727663. PMID 36475442.
  277. ^ Wang, X.; Carranza-Castañeda, O.; Tseng, Z. J. (2022). "Fast spread followed by anagenetic evolution in Eurasian and North American Amphimachairodus". Historical Biology: An International Journal of Paleobiology. 35 (5): 780–798. doi:10.1080/08912963.2022.2067756. S2CID 248597661.
  278. ^ Jiangzuo, Q.; Li, S.; Deng, T. (2022). "Parallelism and lineage replacement of the Late Miocene scimitar toothed cats from the Old and New World". iScience. 25 (12). 105637. Bibcode:2022iSci...25j5637J. doi:10.1016/j.isci.2022.105637. PMC 9730133. PMID 36505925.
  279. ^ Antón, M.; Siliceo, G.; Pastor, J. F.; Salesa, M. J. (2022). "Concealed weapons: A revised reconstruction of the facial anatomy and life appearance of the sabre-toothed cat Homotherium latidens (Felidae, Machairodontinae)". Quaternary Science Reviews. 284: Article 107471. Bibcode:2022QSRv..28407471A. doi:10.1016/j.quascirev.2022.107471. hdl:10261/270770. S2CID 248168629.
  280. ^ Jiangzuo, Q.; Zhao, H.; Chen, X. (2022). "The first complete cranium of Homotherium (Machairodontinae, Felidae) from the Nihewan Basin (northern China)". The Anatomical Record. doi:10.1002/ar.25029. PMID 35819068. S2CID 250454227.
  281. ^ Tsai, C.-H.; Tseng, Z. J. (2022). "Eurasian wanderer: an island sabre-toothed cat (Felidae, Machairodontinae) in the Far East". Papers in Palaeontology. 8 (5): e1469. Bibcode:2022PPal....8E1469T. doi:10.1002/spp2.1469. S2CID 253162343.
  282. ^ Domínguez-Rodrigo, M.; Egeland, C. P.; Cobo-Sánchez, L.; Baquedano, E.; Hulbert, R. C. (2022). "Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds". Scientific Reports. 12 (1): Article number 6045. Bibcode:2022NatSR..12.6045D. doi:10.1038/s41598-022-09480-7. PMC 9061710. PMID 35501323.
  283. ^ Rabe, C.; Chinsamy, A.; Valenciano, A. (2022). "Taxonomic and palaeobiological implications of a large, pathological sabretooth (Carnivora, Felidae, Machairodontinae) from the Lower Pliocene of South Africa". Papers in Palaeontology. 8 (5). e1463. Bibcode:2022PPal....8E1463R. doi:10.1002/spp2.1463. S2CID 252555991.
  284. ^ Cuccu, A.; Valenciano, A.; Azanza, B.; DeMiguel, D. (2023). "A new lynx mandible from the Early Pleistocene of Spain (La Puebla de Valverde, Teruel) and a taxonomical multivariate approach of medium-sized felids". Historical Biology: An International Journal of Paleobiology. 35 (1): 127–138. Bibcode:2023HBio...35..127C. doi:10.1080/08912963.2021.2024181. S2CID 246310044.
  285. ^ Tura-Poch, C.; Prat-Vericat, M.; Sorbelli, L.; Rufí, I.; Boscaini, A.; Iurino, D. A.; Madurell-Malapeira, J. (2023). "Late Pleistocene Mediterranean lynx remains from Avenc del Marge del Moro (NE Iberian Peninsula)". Historical Biology: An International Journal of Paleobiology. 35 (3): 375–387. Bibcode:2023HBio...35..375T. doi:10.1080/08912963.2022.2043292. hdl:2434/959847. S2CID 247589649.
  286. ^ Hodnett, J.-P. M.; White, R. S.; Carpenter, M.; Mead, J. I.; Santucci, V. L. (2022). "Miracinonyx trumani (Carnivora; Felidae) from the Rancholabrean of the Grand Canyon, Arizona and its implications for the ecology of the "American cheetah"". New Mexico Museum of Natural History and Science Bulletin. 88: 157–185.
  287. ^ Figueirido, B.; Pérez-Ramos, A.; Hotchner, A.; Lovelace, D. M.; Pastor, F. J.; Palmqvist, P. (2022). "The brain of the North American cheetah-like cat Miracinonyx trumani". iScience. 25 (12). 105671. Bibcode:2022iSci...25j5671F. doi:10.1016/j.isci.2022.105671. PMC 9758517. PMID 36536677.
  288. ^ Prat-Vericat, M.; Marciszak, A.; Rufí, I.; Sorbelli, L.; Llenas, M.; Bartolini Lucenti, S.; Madurell-Malapeira, J. (2022). "Middle Pleistocene Steppe Lion Remains from Grotte de la Carrière (Têt Valley, Eastern Pyrenees)". Journal of Mammalian Evolution. 29 (3): 547–569. doi:10.1007/s10914-022-09600-0. S2CID 247458106.
  289. ^ Sherani, S.; Perng, L.; Sherani, M. (2022). "Evidence of cave lion (Panthera spelaea) from Pleistocene Northeast China". Historical Biology: An International Journal of Paleobiology. 35 (6): 988–996. doi:10.1080/08912963.2022.2071711. S2CID 248634853.
  290. ^ Marciszak, A.; Ivanoff, D. V.; Semenov, Y. A.; Talamo, S.; Ridush, B.; Stupak, A.; Yanish, Y.; Kovalchuk, O. (2022). "The Quaternary lions of Ukraine and a trend of decreasing size in Panthera spelaea". Journal of Mammalian Evolution. 30: 109–135. doi:10.1007/s10914-022-09635-3. hdl:11585/903022. S2CID 253558913.
  291. ^ Sabol, M.; Tomašových, A.; Gullár, J. (2022). "Geographic and temporal variability in Pleistocene lion-like felids: Implications for their evolution and taxonomy". Palaeontologia Electronica. 25 (2): Article number 25.2.a26. doi:10.26879/1175.
  292. ^ Chatar, N.; Michaud, M.; Fischer, V. (2022). "Not a jaguar after all? Phylogenetic affinities and morphology of the Pleistocene felid Panthera gombaszoegensis" (PDF). Papers in Palaeontology. 8 (5): e1464. Bibcode:2022PPal....8E1464C. doi:10.1002/spp2.1464. hdl:2268/294237. S2CID 252489047.
  293. ^ a b c Czaplewski, N. J.; Morgan, G. S.; Emry, R. J.; Gignac, P. M.; O'Brien, H. D. (2022). "Three New Early Middle Eocene Bats (Mammalia: Chiroptera) from Elderberry Canyon, Nevada, USA". Smithsonian Contributions to Paleobiology. 106 (106): 2–25. doi:10.5479/si.19874677. S2CID 249114343.
  294. ^ Lopatin, A. V. (2022). "Early Pleistocene Horseshoe Bat Rhinolophus macrorhinus cimmerius subsp. nov. (Rhinolophidae, Chiroptera) from the Taurida Cave in Crimea". Doklady Biological Sciences. 506 (1): 119–127. doi:10.1134/S0012496622050076. PMID 36301417. S2CID 253155578.
  295. ^ Galán García, J.; Bañuls-Cardona, S.; Cuenca-Bescós, G.; Vergès, J. M. (2022). "Understanding the biogeography of Western European bats: the latest Pleistocene to Middle Holocene assemblage of El Mirador site (Sierra de Atapuerca, Spain)". Historical Biology: An International Journal of Paleobiology. 35 (9): 1686–1700. doi:10.1080/08912963.2022.2107430. S2CID 251679747.
  296. ^ Jiménez-Hidalgo, E.; Guerrero-Arenas, R.; Crespo, V. D. (2022). "First galericine erinaceid (Mammalia: Eulipotyphla) from the early Oligocene of tropical North America". Historical Biology: An International Journal of Paleobiology. 35 (6): 935–940. doi:10.1080/08912963.2022.2070018. S2CID 248467861.
  297. ^ a b Zazhigin, V. S.; Voyta, L. L. (2022). "New Neogene anourosoricin shrews from northern Asia". Palaeontologia Electronica. 25 (3): Article number 25.3.a29. doi:10.26879/1209.
  298. ^ Wazir, W. A.; Cailleux, F.; Sehgal, R. K.; Patnaik, R.; Kumar, N.; van den Hoek Ostende, L. W. (2022). "First Record of Insectivore from the late Oligocene, Kargil Formation (Ladakh Molasse Group), Ladakh Himalayas". Journal of Asian Earth Sciences: X. 8: Article 100105. Bibcode:2022JAESX...800105W. doi:10.1016/j.jaesx.2022.100105. S2CID 249858720.
  299. ^ a b Oberg, D. E.; Samuels, J. X. (2022). "Fossil moles from the Gray Fossil Site (Tennessee): Implications for diversification and evolution of North American Talpidae". Palaeontologia Electronica. 25 (3). 25.3.a33. doi:10.26879/1150.
  300. ^ a b Korth, W. W. (2022). "The Hedgehog Ocajila Macdonald, 1963 (Mammalia, Lipotyphla, Erinaceidae) from the Oligocene (Orellan to Arikareean) of North America". Annals of Carnegie Museum. 87 (3): 207–220. doi:10.2992/007.087.0302. S2CID 250223143.
  301. ^ Li, L. (2022). "New species of Plesiosorex (Eulipotyphla) from the middle Miocene of Gansu: the first record of Plesiosoricidae in China". Historical Biology: An International Journal of Paleobiology. 35 (9): 1556–1563. doi:10.1080/08912963.2022.2102912. S2CID 250974897.
  302. ^ Li, L.; Cailleux, F.; Mutu, E.; Van den Hoek Ostende, L. W.; Qiu, Z. (2022). "Sonidolestes wendusui, a new genus of Erinaceinae (Eulipotyphla, Mammalia) from the Lower Miocene of Inner Mongolia, China". Historical Biology: An International Journal of Paleobiology. 36: 1–11. doi:10.1080/08912963.2022.2141628. S2CID 253439599.
  303. ^ Parmar, V.; Norboo, R.; Magotra, R. (2023). "First record of Erinaceidae and Talpidae from the Miocene Siwalik deposits of India". Historical Biology: An International Journal of Paleobiology. 35 (2): 276–283. Bibcode:2023HBio...35..276P. doi:10.1080/08912963.2022.2034806. S2CID 246755142.
  304. ^ Lopatin, A. V. (2022). "Shrews of the Genus Chodsigoa (Soricidae, Lipotyphla) from the Pleistocene of Vietnam". Doklady Biological Sciences. 502 (1): 15–20. doi:10.1134/S0012496622010070. PMID 35298748. S2CID 247521676.
  305. ^ Eisenmann, V. (2022). "Old World Fossil Equus (Perissodactyla, Mammalia), Extant Wild Relatives, and Incertae Sedis Forms". Quaternary. 5 (3). 38. doi:10.3390/quat5030038.
  306. ^ Bai, B.; Qi, T. (2022). "Ulanodon, a new name for the hyracodontid Ulania Qi, 1990 (Perissodactyla, Mammalia)". Vertebrata PalAsiatica. 60 (4): 328–329. doi:10.19615/j.cnki.2096-9899.220722.
  307. ^ Bai, B. (2022). "Reappraisal of some perissodacyl fossils from the Middle Eocene of the Lijiang Basin, Yunnan, China with a revision of tapiroid Diplolophodon". Vertebrata PalAsiatica. 61 (1): 26–42. doi:10.19615/j.cnki.2096-9899.220721.
  308. ^ Mallet, C.; Billet, G.; Cornette, R.; Houssaye, A. (2022). "Adaptation to graviportality in Rhinocerotoidea? An investigation through the long bone shape variation in their hindlimb". Zoological Journal of the Linnean Society. 196 (3): 1235–1271. doi:10.1093/zoolinnean/zlac007.
  309. ^ Hullot, M.; Antoine, P.-O.; Spassov, N.; Koufos, G. D.; Merceron, G. (2022). "Late Miocene rhinocerotids from the Balkan-Iranian province: ecological insights from dental microwear textures and enamel hypoplasia" (PDF). Historical Biology: An International Journal of Paleobiology. 35 (8): 1417–1434. doi:10.1080/08912963.2022.2095910. S2CID 251046561.
  310. ^ Li, S.; Jiangzuo, Q.; Deng, T. (2022). "Body mass of the giant rhinos (Paraceratheriinae, Mammalia) and its tendency in evolution". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2022.2095908. S2CID 250366746.
  311. ^ Kampouridis, P.; Hartung, J.; Ferreira, G. S.; Böhme, M. (2022). "Reappraisal of the late Miocene elasmotheriine Parelasmotherium schansiense from Kutschwan (Shanxi Province, China) and its phylogenetic relationships". Journal of Vertebrate Paleontology. 41 (6): e2080556. doi:10.1080/02724634.2021.2080556. S2CID 251369275.
  312. ^ Pandolfi, L.; Sendra, J.; Reolid, M.; Rook, L. (2022). "New Pliocene Rhinocerotidae findings from the Iberian Peninsula and the revision of the Spanish Pliocene records". PalZ. 96 (2): 343–354. Bibcode:2022PalZ...96..343P. doi:10.1007/s12542-022-00607-9. hdl:2158/1254352. S2CID 246075801.
  313. ^ Uzunidis, A.; Antoine, P.-O.; Brugal, J.-P. (2022). "A Middle Pleistocene Coelodonta antiquitatis praecursor Guérin (1980) (Mammalia, Perissodactyla) from Les Rameaux, SW France, and a revised phylogeny of Coelodonta Bronn, 1831" (PDF). Quaternary Science Reviews. 288: Article 107594. Bibcode:2022QSRv..28807594U. doi:10.1016/j.quascirev.2022.107594.
  314. ^ Badiola, A.; Perales-Gogenola, L.; Astibia, H.; Pereda-Suberbiola, X. (2022). "A synthesis of Eocene equoids (Perissodactyla, Mammalia) from the Iberian Peninsula: new signs of endemism". Historical Biology: An International Journal of Paleobiology. 34 (8): 1623–1631. Bibcode:2022HBio...34.1623B. doi:10.1080/08912963.2022.2060098. S2CID 248164842.
  315. ^ Perales-Gogenola, L.; Badiola, A.; Pereda Suberbiola, X.; Astibia, H. (2022). "New Eocene fossil remains of Palaeotheriidae (Perissodactyla, Mammalia) from Mazaterón (Soria, Castile and Leon, Spain)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1388–1398. Bibcode:2022HBio...34.1388P. doi:10.1080/08912963.2021.2025363. S2CID 245845873.
  316. ^ Sun, B.; Liu, Y.; Chen, S.; Deng, T. (2022). "Hippotherium Datum implies Miocene palaeoecological pattern". Scientific Reports. 12 (1): Article number 3605. Bibcode:2022NatSR..12.3605S. doi:10.1038/s41598-022-07639-w. PMC 8897424. PMID 35246584.
  317. ^ Răţoi, B. G.; Haiduc, B. S.; Semprebon, G. M.; Ţibuleac, P.; Bernor, R. L. (2022). "The Turolian hipparions from Cioburciu Site (Republic of Moldova): systematics and paleodiet". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 453–467. doi:10.54103/2039-4942/15810. S2CID 248904228.
  318. ^ Orlandi-Oliveras, G.; Köhler, M.; Clavel, J.; Scott, R. S.; Mayda, S.; Kaya, T.; Merceron, G. (2022). "Feeding strategies of circum‑Mediterranean hipparionins during the late Miocene: Exploring dietary preferences related to size through dental microwear analysis". Palaeontologia Electronica. 25 (1): Article number 25.1.a13. doi:10.26879/990.
  319. ^ van der Made, J.; Boulaghraief, K.; Chelli-Cheheb, R.; Cáceres, I.; Harichane, Z.; Sahnouni, M. (2022). "The last North African hipparions – hipparion decline and extinction follows a common pattern". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (1): 39–87. doi:10.1127/njgpa/2022/1037. S2CID 246465182.
  320. ^ Dong, W.; Bai, W.-P.; Liu, W.-H.; Zhang, L.-M. (2022). "The first description of Equidae (Perissodactyla, Mammalia) from Xinyaozi Ravine in Shanxi, North China". Vertebrata PalAsiatica: 1. doi:10.19615/j.cnki.2096-9899.220926.
  321. ^ Eisenmann, V. (2022). "The equids from Liventsovka and other localities of the Khaprovskii Faunal Complex, Russia: A revision". Geobios. 70: 17–33. Bibcode:2022Geobi..70...17E. doi:10.1016/j.geobios.2021.11.001. S2CID 246467745.
  322. ^ Landry, Z.; Roloson, M. J.; Fraser, D. (2022). "Investigating the reliability of metapodials as taxonomic indicators for Beringian horses". Journal of Mammalian Evolution. 29 (4): 863–875. doi:10.1007/s10914-022-09626-4. PMC 9684255. PMID 36438779.
  323. ^ Mecozzi, B.; Strani, F. (2022). "Equids from the late Middle Pleistocene to Early Holocene of the Apulia Peninsula (southern Italy): reassessment of their taxonomy and biochronology". Geodiversitas. 44 (2): 17–45. doi:10.5252/geodiversitas2022v44a2. hdl:11573/1639929. S2CID 246241339.
  324. ^ Cirilli, O. (2022). "Equus stehlini Azzaroli, 1964 (Perissodactyla, Equidae). A revision of the most enigmatic horse from the Early Pleistocene of Europe, with new insights on the evolutionary history of European medium- and small-sized horses". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 241–265. doi:10.54103/2039-4942/15744. S2CID 248902600.
  325. ^ Cai, D.; Zhu, S.; Gong, M.; Zhang, N.; Wen, J.; Liang, Q.; Sun, W.; Shao, X.; Guo, Y.; Cai, Y.; Zheng, Z.; Zhang, W.; Hu, S.; Wang, X.; Tian, H.; Li, Y.; Liu, W.; Yang, M.; Yang, J.; Wu, D.; Orlando, L.; Jiang, Y. (2022). "Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene". eLife. 11: e73346. doi:10.7554/eLife.73346. PMC 9142152. PMID 35543411.
  326. ^ Cirilli, O.; Machado, H.; Arroyo-Cabrales, J.; Barrón-Ortiz, C. I.; Davis, E.; Jass, C. N.; Jukar, A. M.; Landry, Z.; Marín-Leyva, A. H.; Pandolfi, L.; Pushkina, D.; Rook, L.; Saarinen, J.; Scott, E.; Semprebon, G.; Strani, F.; Villavicencio, N. A.; Kaya, F.; Bernor, R. L. (2022). "Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene". Biology. 11 (9). 1258. doi:10.3390/biology11091258. PMC 9495906. PMID 36138737.
  327. ^ Ferrero, B. S.; Schmidt, G. I.; Pérez-García, M. I.; Perea, D.; Ribeiro, A. M. (2022). "A new Toxodontidae (Mammalia, Notoungulata) from the upper Pliocene–lower Pleistocene of Uruguay". Journal of Vertebrate Paleontology. 41 (5): e2023167. doi:10.1080/02724634.2021.2023167. S2CID 247089081.
  328. ^ Zack, Shawn P.; Poust, Ashley W.; Wagner, Hugh (2022-03-15). "Diegoaelurus, a new machaeroidine (Oxyaenidae) from the Santiago Formation (late Uintan) of southern California and the relationships of Machaeroidinae, the oldest group of sabertooth mammals". PeerJ. 10: e13032. doi:10.7717/peerj.13032. ISSN 2167-8359. PMC 8932314. PMID 35310159.
  329. ^ Zimicz, N.; Fernández, M.; Bond, M.; Chornogubsky, L.; Fernicola, J. C. (2022). "A new SANU (Mammalia, Panperissodactyla) from the early Eocene levels of the Lumbrera Formation at Los Cardones National Park (Salta Province, Northwestern Argentina)". Historical Biology: An International Journal of Paleobiology. 35 (11): 2193–2205. doi:10.1080/08912963.2022.2138373. S2CID 253208445.
  330. ^ Vera, R. B.; Krapovickas, V. (2022). "Paleobiology and paleoecology of ungulates from the Miocene of South America based on an ichnological analysis". Palaeogeography, Palaeoclimatology, Palaeoecology. 606. 111247. Bibcode:2022PPP...60611247V. doi:10.1016/j.palaeo.2022.111247. S2CID 252487435.
  331. ^ Schmidt, G. I.; Montalvo, C. I.; Cerdeño, E.; Sostillo, R.; Tomassini, R. L.; Bonini, R. A. (2022). "Updated data on Litopterna from the Huayquerian Stage/Age (Late Miocene-Early Pliocene) of central-east Argentina". Comptes Rendus Palevol. 21 (32): 721–743. doi:10.5852/cr-palevol2022v21a32. S2CID 252400542.
  332. ^ Vera, B.; Medina-González, P.; Moreno, K. (2022). "Paleobiological inferences on middle Eocene native ungulates from South America: Functional morphological analysis of Notostylops and Notopithecus". Journal of Morphology. 283 (9): 1231–1256. doi:10.1002/jmor.21499. PMID 35915873. S2CID 251255699.
  333. ^ Hernández Del Pino, Santiago; Seoane, Federico; Cerdeño, Esperanza (2022). "New craniodental material of the typotherian notoungulates from the upper Oligocene of Mendoza, central-western Argentina and their taxonomical importance". Acta Palaeontologica Polonica. 67 (4): 983–997. doi:10.4202/app.00974.2022. hdl:11336/202725. ISSN 0567-7920.
  334. ^ Vera, B.; Romano, C. O. (2022). "Youngest Interatheriinae (Mammalia, Notoungulata) from lower Pliocene Tunuyán Formation (Mendoza, Argentina)". Journal of Vertebrate Paleontology. 41 (6): e2023556. doi:10.1080/02724634.2021.2023556. S2CID 247971405.
  335. ^ Fernández-Monescillo, M.; Croft, D. A.; Pujos, F.; Antoine, P.-O. (2022). "Resolution of the long-standing controversy over the type species of the genus Pseudotypotherium (Mesotheriidae, Notoungulata)". Palaeoworld. doi:10.1016/j.palwor.2022.09.009. S2CID 252770733.
  336. ^ Fernández-Monescillo, M.; Croft, D. A.; Pujos, F.; Antoine, P.-O. (2022). "Taxonomic history and intraspecific analysis of Mesotherium cristatum (Mammalia, Notoungulata, Mesotheriidae) from the Early-Middle Pleistocene of Buenos Aires Province, Argentina". Historical Biology: An International Journal of Paleobiology. 35 (6): 1028–1040. doi:10.1080/08912963.2022.2074844. S2CID 249531139.
  337. ^ Armella, M. A.; Ercoli, M. D.; Bonini, R. A.; García-López, D. A. (2022). "Detecting morphological gaps in tooth outlines of a Pachyrukhinae (Hegetotheriidae, Notoungulata) lineage: systematic and palaeobiogeographical significance of the records from Northwestern Argentina". Comptes Rendus Palevol. 21 (16): 323–348. doi:10.5852/cr-palevol2022v21a16. S2CID 248583009.
  338. ^ Gomes, V. S.; Lessa, C. M. B.; de Oliveira, G. R.; Bantim, R. A. M.; Sayão, J.; Bocherens, H.; de Araújo-Júnior, H. I.; Dantas, M. A. T. (2022). "Seasonal variations in diet (δ13C) and climate (δ 18O) inferred through toxodonts enamel teeth during the Late Pleistocene in the Brazilian Intertropical Region". Journal of South American Earth Sciences. 121. 104148. doi:10.1016/j.jsames.2022.104148. S2CID 254530135.
  339. ^ Matsui, K.; Valenzuela-Toro, A. M.; Pyenson, N. D. (2022). "New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia". Scientific Reports. 12 (1): Article number 14246. Bibcode:2022NatSR..1214246M. doi:10.1038/s41598-022-18295-5. PMC 9393157. PMID 35989343.
  340. ^ Kort, A. E.; Ahrens, H.; Polly, P. D.; Morlo, M. (2022). "Postcrania and paleobiology of Patriofelis ulta (Mammalia, Oxyaenodonta) of the Bridgerian (lower-middle Eocene) of North America". Journal of Vertebrate Paleontology. 41 (6): e2045491. doi:10.1080/02724634.2021.2045491. S2CID 247985479.
  341. ^ Flink, T.; Werdelin, L. (2022). "Digital endocasts from two late Eocene carnivores shed light on the evolution of the brain at the origin of Carnivora". Papers in Palaeontology. 8 (2): e1422. Bibcode:2022PPal....8E1422F. doi:10.1002/spp2.1422. S2CID 247465166.
  342. ^ Barasoain, D.; Zurita, A. E.; Croft, D. A.; Montalvo, C. I.; Contreras, V. H.; Miño-Boilini, Á. R.; Tomassini, R. L. (2022). "A New Glyptodont (Xenarthra: Cingulata) from the Late Miocene of Argentina: New Clues About the Oldest Extra-Patagonian Radiation in Southern South America". Journal of Mammalian Evolution. 29 (2): 263–282. doi:10.1007/s10914-021-09599-w. S2CID 245945029.
  343. ^ Avilla, L. S.; Góis, F.; Soibelzon, E.; Muniz de Abreu, G.; Rotti, A. (2022). "A multi-proxy study of an extinct giant armadillo juvenile unveils the initial life of pampatheres (Cingulata: Xenarthra: Mammalia)". Journal of South American Earth Sciences. 118: Article 103928. Bibcode:2022JSAES.11803928A. doi:10.1016/j.jsames.2022.103928. S2CID 250589266.
  344. ^ Machado, F. A.; Marroig, G.; Hubbe, A. (2022). "The pre-eminent role of directional selection in generating extreme morphological change in glyptodonts (Cingulata; Xenarthra)". Proceedings of the Royal Society B: Biological Sciences. 289 (1967): Article ID 20212521. doi:10.1098/rspb.2021.2521. PMC 8767197. PMID 35042420.
  345. ^ Nuñez-Blasco, A.; Miño-Boilini, Á. R.; Bonini, R. A.; de S. Barbosa, F. H.; Tomassini, R. L.; Zurita, A. E. (2022). "New remains of Eleutherocercus (Xenarthra, Cingulata, Glyptodontidae) from the Pampean and Northwestern regions of Argentina: morphology and phylogeny of late Neogene Doedicurinae". Historical Biology: An International Journal of Paleobiology. 35 (8): 1274–1287. doi:10.1080/08912963.2022.2087521. S2CID 250028511.
  346. ^ Sedor, F. A.; Klimeck, T. D. F.; Dias, E. V.; Oliveira, E. V.; Ciancio, M. R.; Vieira, K. T. P.; Fernandes, L. A.; Angulo, R. J. (2022). "The Eocene armadillo Utaetus buccatus (Euphractinae) in the Guabirotuba Formation (Curitiba basin) and carapace morphological implications". Journal of South American Earth Sciences. 114: Article 103694. Bibcode:2022JSAES.11403694S. doi:10.1016/j.jsames.2021.103694.
  347. ^ Gaudin, T. J.; Boscaini, A.; Mamani Quispe, B.; Andrade Flores, R.; Fernández-Monescillo, M.; Marivaux, L.; Antoine, P.-O.; Münch, P.; Pujos, F. (2022). "Recognition of a new nothrotheriid genus (Mammalia, Folivora) from the early late Miocene of Achiri (Bolivia) and the taxonomic status of the genus Xyophorus" (PDF). Historical Biology: An International Journal of Paleobiology. 35 (6): 1041–1051. doi:10.1080/08912963.2022.2075744. S2CID 258688117.
  348. ^ Casali, D. M.; Boscaini, A.; Gaudin, T. J.; Perini, F. A. (2022). "Reassessing the phylogeny and divergence times of sloths (Mammalia: Pilosa: Folivora), exploring alternative morphological partitioning and dating models". Zoological Journal of the Linnean Society. 196 (4): 1505–1551. doi:10.1093/zoolinnean/zlac041.
  349. ^ Bomfim Melki, L.; de Souza Barbosa, F. H.; Paglarelli Bergqvist, L. (2022). "On the Eating Habits of Sloths: Finite Element Analysis and Niche Specialization". Journal of Mammalian Evolution. 29 (4): 763–772. doi:10.1007/s10914-022-09618-4. S2CID 250250829.
  350. ^ Gaudin, T. J.; Scaife, T. (2022). "Cranial osteology of a juvenile specimen of Acratocnus ye (Mammalia, Xenarthra, Folivora) and its ontogenetic and phylogenetic implications". The Anatomical Record. 306 (3): 607–637. doi:10.1002/ar.25062. PMID 36054593. S2CID 251779213.
  351. ^ Dantas, M. A. T.; Santos, A. M. A. (2022). "Inferring the paleoecology of the Late Pleistocene giant ground sloths from the Brazilian Intertropical Region". Journal of South American Earth Sciences. 117: Article 103899. Bibcode:2022JSAES.11703899D. doi:10.1016/j.jsames.2022.103899.
  352. ^ Boscaini, A.; Toledo, N.; Pérez, L. M.; Taglioretti, M. L.; McFee, R. K. (2022). "New well-preserved materials of Glossotherium chapadmalense (Xenarthra, Mylodontidae) from the Pliocene of Argentina shed light on the origin and evolution of the genus". Journal of Vertebrate Paleontology. 42 (2). e2128688. Bibcode:2022JVPal..42E8688B. doi:10.1080/02724634.2022.2128688. S2CID 253286158.
  353. ^ Quiñones, S. I.; Zurita, A. E.; Miño-Boilini, Á. R.; Candela, A. M.; Luna, C. A. (2022). "Unexpected record of the aquatic sloth Thalassocnus (Mammalia, Xenarthra, Folivora) in the upper Neogene of the Puna (Jujuy, Argentina)". Journal of Vertebrate Paleontology. 42 (1). e2109973. Bibcode:2022JVPal..42E9973Q. doi:10.1080/02724634.2022.2109973. S2CID 252327107.
  354. ^ Barbosa, F. H. S.; de Araújo-Júnior, H. I.; da Costa, I.; de Araújo, A. V.; Oliveira, E. V. (2022). "Spinal fracture reveals an accident episode in Eremotherium laurillardi shedding light on the formation of a fossil assemblage". Scientific Reports. 12 (1): Article number 4119. Bibcode:2022NatSR..12.4119D. doi:10.1038/s41598-022-08107-1. PMC 8904833. PMID 35260748.
  355. ^ Semken Jr., H. A.; McDonald, H. G.; Graham, R. W.; Adrain, T.; Artz, J. A.; Baker, R. G.; Bryk, A. B.; Brenzel, D. J.; Bettis, E. A.; Clack, A. A.; Grimm, B. L.; Haj, A.; Horgen, S. E.; Mahoney, M. C.; Ray, H. A.; Theler, J. L. (2022). "Paleobiology of Jefferson's Ground Sloth (Megalonyx jeffersonii) derived from three contemporaneous, ontogenetically distinct individuals recovered from Southwestern Iowa, U.S.A." Journal of Vertebrate Paleontology. 42 (1). e2124115. Bibcode:2022JVPal..42E4115S. doi:10.1080/02724634.2022.2124115. S2CID 253258474.
  356. ^ Román-Carrión, J. E.; Madden, R.; Miño-Boilini, Á. R.; Zurita, A. E. (2022). "New data on the diversity and chronology of the late Miocene Xenarthra (Mammalia) from Ecuador". Journal of Vertebrate Paleontology. 41 (6): e2088293. doi:10.1080/02724634.2021.2088293. S2CID 250594374.
  357. ^ Wang, Hai-Bing; Hoffmann, Simone; Wang, Dian-Can; Wang, Yuan-Qing (2022-03-28). "A new mammal from the Lower Cretaceous Jehol Biota and implications for eutherian evolution". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): 20210042. doi:10.1098/rstb.2021.0042. PMC 8819371. PMID 35125007. S2CID 246608506.
  358. ^ Wilson Mantilla, Gregory P.; Renne, Paul R.; Samant, Bandana; Mohabey, Dhananjay M.; Dhobale, Anup; Tholt, Andrew J.; Tobin, Thomas S.; Widdowson, Mike; Anantharaman, S.; Dassarma, Dilip Chandra; Wilson Mantilla, Jeffrey A. (2022-02-02). "New mammals from the naskal intertrappean site and the age of India's earliest eutherians". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: 110857. Bibcode:2022PPP...59110857W. doi:10.1016/j.palaeo.2022.110857. ISSN 0031-0182. S2CID 246508839.
  359. ^ Goin, F. J.; Crespo, V. D.; Pickford, M. (2022). "A new adapisoriculid mammal (Eutheria) from the early-middle Eocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 25: 56–65.
  360. ^ Korth, W. W. (2022). "New Material of Leptictids (Mammalia: Leptictida) from the Late Eocene (Duchesnean–Chadronian) of Southwestern Montana". Annals of Carnegie Museum. 87 (4): 309–326. doi:10.2992/007.087.0403. S2CID 255547100.
  361. ^ Funston, G. F.; dePolo, P. E.; Sliwinski, J. T.; Dumont, M.; Shelley, S. L.; Pichevin, L. E.; Cayzer, N. J.; Wible, J. R.; Williamson, T. E.; Rae, J. W. B.; Brusatte, S. L. (2022). "The origin of placental mammal life histories". Nature. 610 (7930): 107–111. Bibcode:2022Natur.610..107F. doi:10.1038/s41586-022-05150-w. hdl:10023/27089. PMID 36045293. S2CID 251978620.
  362. ^ de Muizon, C.; Billet, G. (2022). "Dental ontogeny in the early Paleocene placental mammal Alcidedorbignya inopinata (Pantodonta) from Tiupampa (Bolivia)". Geodiversitas. 44 (32): 989–1050. doi:10.5252/geodiversitas2022v44a32. S2CID 254457739.
  363. ^ Vera, B.; Folino, M.; Soechting, W.; Böttcher, N. (2022). "New data on Propyrotherium (Mammalia, Pyrotheria) from the middle Eocene age (Chubut, Argentina): anatomy, age constraints, and phylogeny". The Science of Nature. 109 (5): Article number 40. Bibcode:2022SciNa.109...40V. doi:10.1007/s00114-022-01810-z. PMID 35939154. S2CID 251401349.
  364. ^ Avilla, L. S.; Mothé, D. (2021). "Out of Africa: A New Afrotheria Lineage Rises From Extinct South American Mammals". Frontiers in Ecology and Evolution. 9: Article 654302. doi:10.3389/fevo.2021.654302.
  365. ^ Kramarz, A. G.; Macphee, R. D. E. (2022). "Did some extinct South American native ungulates arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé's (2021) Sudamericungulata – Panameridiungulata hypothesis". Journal of Mammalian Evolution. 30: 67–77. doi:10.1007/s10914-022-09633-5. S2CID 253433775.
  366. ^ a b Travouillon, K. J.; Butler, K.; Archer, M.; Hand, S. J. (2022). "Two new species of the genus Gumardee (Marsupialia, Macropodiformes) reveal the repeated evolution of bilophodonty in kangaroos". Alcheringa: An Australasian Journal of Palaeontology. 46 (1): 105–128. Bibcode:2022Alch...46..105T. doi:10.1080/03115518.2021.2012595. S2CID 246819547.
  367. ^ Crespo, V. D.; Goin, F. J.; Pickford, M. (2022). "The last African metatherian". Fossil Record. 25 (1): 173–186. doi:10.3897/fr.25.80706. hdl:10362/151025.
  368. ^ Kerr, I. A. R.; Prideaux, G. J. (2022). "A new genus of kangaroo (Marsupialia, Macropodidae) from the late Pleistocene of Papua New Guinea". Transactions of the Royal Society of South Australia. 146 (2): 295–318. Bibcode:2022TRSAu.146..295K. doi:10.1080/03721426.2022.2086518. S2CID 250189771.
  369. ^ Stutz, N. S.; Abello, M. A.; Marivaux, L.; Boivin, M.; Pujos, F.; Benites-Palomino, A. M.; Salas-Gismondi, R.; Tejada-Lara, J. V.; Andriolli Custódio, M.; Roddaz, M.; Ventura Santos, R.; Ribeiro, A. M.; Antoine, P.-O. (2022). "Late middle Miocene Metatheria (Mammalia: Didelphimorphia and Paucituberculata) from Juan Guerra, San Martín Department, Peruvian Amazonia" (PDF). Journal of South American Earth Sciences. 118. Article 103902. Bibcode:2022JSAES.11803902S. doi:10.1016/j.jsames.2022.103902. S2CID 250401959.
  370. ^ de Muizon, C.; Ladevèze, S. (2022). "New material of Incadelphys antiquus (Pucadelphyda, Metatheria, Mammalia) from the early Palaeocene of Bolivia reveals phylogenetic affinities with enigmatic North and South American metatherians". Geodiversitas. 44 (22): 609–643. doi:10.5252/geodiversitas2022v44a22. S2CID 250339988.
  371. ^ Engelman, R. K.; Croft, D. A. (2022). "Identifying tooth position of isolated teeth of sparassodonts (Mammalia: Metatheria) using geometric morphometrics". Palaeontologia Electronica. 25 (1): Article number 25.1.a8. doi:10.26879/1111.
  372. ^ Babot, M. J.; Rougier, G. W.; García-López, D. A.; Bertelli, S. B.; Herrera, C. M.; Deraco, M. V.; Giannini, N. P. (2022). "New mandibular remains of Callistoe (Metatheria, Sparassodonta) reveal unexpected anatomical, functional, and evolutionary aspects of this carnivorous genus". Vertebrate Zoology. 72: 469–485. doi:10.3897/vz.72.e82709.
  373. ^ Tarquini, S. D.; Ladevèze, S.; Prevosti, F. J. (2022). "The multicausal twilight of South American native mammalian predators (Metatheria, Sparassodonta)". Scientific Reports. 12 (1): Article number 1224. Bibcode:2022NatSR..12.1224T. doi:10.1038/s41598-022-05266-z. PMC 8786871. PMID 35075186.
  374. ^ Pino, K.; Vallejos-Garrido, P.; Espinoza-Aravena, N.; Cooper, R. B.; Silvestro, D.; Hernández, C. E.; Rodríguez-Serrano, E. (2022). "Regional landscape change triggered by Andean uplift: The extinction of Sparassodonta (Mammalia, Metatheria) in South America". Global and Planetary Change. 210: Article 103758. Bibcode:2022GPC...21003758P. doi:10.1016/j.gloplacha.2022.103758. S2CID 246764027.
  375. ^ Beck, R. M. D.; Voss, R. S.; Jansa, S. A. (2022). "Craniodental morphology and phylogeny of marsupials" (PDF). Bulletin of the American Museum of Natural History. 457: 1–350. doi:10.1206/0003-0090.457.1.1. hdl:2246/7298.
  376. ^ Prideaux, G. J.; Kerr, I. A. R.; van Zoelen, J. D.; Grün, R.; van der Kaars, S.; Oertle, A.; Douka, K.; Grono, E.; Barron, A.; Mountain, M.-J.; Westaway, M. C.; Denham, T. (2022). "Re-evaluating the evidence for late-surviving megafauna at Nombe rockshelter in the New Guinea highlands". Archaeology in Oceania. 57 (3): 223–248. doi:10.1002/arco.5274. hdl:1885/311502. S2CID 252359282.
  377. ^ Wagstaffe, A. Y.; O'Driscoll, A. M.; Kunz, C. J.; Rayfield, E. J.; Janis, C. M. (2022). "Divergent locomotor evolution in "giant" kangaroos: Evidence from foot bone bending resistances and microanatomy". Journal of Morphology. 283 (3): 313–332. doi:10.1002/jmor.21445. PMC 9303454. PMID 34997777. S2CID 245812567.
  378. ^ Richards, H. L.; Rovinsky, D. S.; Adams, J. W.; Evans, A. R. (2022). "Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape". Journal of Mammalian Evolution. 30: 47–66. doi:10.1007/s10914-022-09640-6. S2CID 255081555.
  379. ^ Louys, J.; Duval, M.; Beck, R. M. D.; Pease, E.; Sobbe, I.; Sands, N.; Price, G. J. (2022). "Cranial remains of Ramsayia magna from the Late Pleistocene of Australia and the evolution of gigantism in wombats (Marsupialia, Vombatidae)". Papers in Palaeontology. 8 (6). e1475. Bibcode:2022PPal....8E1475L. doi:10.1002/spp2.1475. hdl:10072/420259. S2CID 254622473.
  380. ^ Flannery, T. F.; Rich, T. H.; Vickers-Rich, P.; Ziegler, T.; Veatch, E. G.; Helgen, K. M. (2022). "A review of monotreme (Monotremata) evolution". Alcheringa: An Australasian Journal of Palaeontology. 46 (1): 3–20. Bibcode:2022Alch...46....3F. doi:10.1080/03115518.2022.2025900. S2CID 247542433.
  381. ^ a b c d Lasseron, M.; Martin, T.; Allain, R.; Haddoumi, H.; Jalil, N.-E.; Zouhri, S.; Gheerbrant, E. (2022). "An African Radiation of "Dryolestoidea" (Donodontidae, Cladotheria) and its Significance for Mammalian Evolution" (PDF). Journal of Mammalian Evolution. 29 (4): 733–761. doi:10.1007/s10914-022-09613-9. S2CID 249324444.
  382. ^ a b c Martin, Thomas; Averianov, Alexander; Schultz, Julia; Schellhorn, Rico; Schwermann, Achim (2022). "First spalacotheriid and dryolestid mammals from the Cretaceous of Germany". Acta Palaeontologica Polonica. 67 (1): 155–175. doi:10.4202/app.00914.2021. ISSN 0567-7920. S2CID 247876132.
  383. ^ a b Mao, F.; Brewer, P.; Hooker, J. J.; Meng, J. (2022). "New allotherian specimens from the Middle Jurassic Woodeaton Quarry (Oxfordshire) and implications for haramiyidan diversity and phylogeny". Journal of Systematic Palaeontology. 20 (1): 1–37. doi:10.1080/14772019.2022.2097021. S2CID 251708147.
  384. ^ Jin, X.; Mao, F.; Du, T.; Yang, Y.; Meng, J. (2022). "A new multituberculate from the latest Cretaceous of central China and its implications for multituberculate tooth homologies and occlusion". Journal of Mammalian Evolution. 30: 1–20. doi:10.1007/s10914-022-09636-2. S2CID 253192551.
  385. ^ Schultz, J. A.; Schellhorn, R.; Skutschas, P. P.; Vitenko, D. D.; Kolchanov, V. V.; Grigoriev, D. V.; Kuzmin, I. T.; Kolosov, P. N.; Lopatin, A. V.; Averianov, A. O.; Martin, T. (2022). "Mammalian petrosal from the Lower Cretaceous high paleo-latitude Teete locality (Yakutia, Eastern Russia)". Vertebrate Zoology. 72: 159–168. doi:10.3897/vz.72.e78479.
  386. ^ Weaver, L. N.; Fulghum, H. Z.; Grossnickle, D. M.; Brightly, W. H.; Kulik, Z. T.; Wilson Mantilla, G. P.; Whitney, M. R. (2022). "Multituberculate Mammals Show Evidence of a Life History Strategy Similar to That of Placentals, Not Marsupials". The American Naturalist. 200 (3): 383–400. doi:10.1086/720410. PMID 35977786. S2CID 250653859.
  387. ^ Rich, T. H.; Krause, D. W.; Trusler, P.; White, M. A.; Kool, L.; Evans, A. R.; Morton, S.; Vickers-Rich, P. (2022). "Second specimen of Corriebaatar marywaltersae from the Lower Cretaceous of Australia confirms its multituberculate affinities". Acta Palaeontologica Polonica. 67 (1): 115–134. doi:10.4202/app.00924.2021. S2CID 247905998.
  388. ^ Solomon, A. A.; Codrea, V. A.; Venczel, M.; Smith, T. (2022). "New data on Barbatodon oardaensis Codrea, Solomon, Venczel & Smith, 2014, the smallest Late Cretaceous multituberculate mammal from Europe". Comptes Rendus Palevol. 21 (13): 253–271. doi:10.5852/cr-palevol2022v21a13. S2CID 247984324.
  389. ^ Csiki-Sava, Z.; Vremir, M.; Meng, J.; Vasile, Ș.; Brusatte, S. L.; Norell, M. A. (2022). "Spatial and temporal distribution of the island-dwelling Kogaionidae (Mammalia, Multituberculata) in the uppermost Cretaceous of Transylvania (Western Romania)". Bulletin of the American Museum of Natural History. 456: 1–109. doi:10.1206/0003-0090.456.1.1. hdl:2246/7297. S2CID 249648632.
  390. ^ Mao, T. H.; Liu, D. W.; Meng, J. (2022). "New material of the trechnotherian mammal Lactodens from the Early Cretaceous Jehol Biota: Comparison with Origolestes and implications for mammal evolution". Acta Palaeontologica Polonica. 67 (1): 135–153. doi:10.4202/app.00918.2021. S2CID 247907570.
  391. ^ Harper, T.; Adkins, C. F.; Rougier, G. W. (2022). "Reconstructed masticatory biomechanics of Peligrotherium tropicalis, a non-therian mammal from the Paleocene of Argentina". Acta Palaeontologica Polonica. 67 (1): 177–201. doi:10.4202/app.00912.2021. S2CID 247881626.
  392. ^ Flannery, T. F.; Rich, T. H.; Vickers-Rich, P.; Veatch, E. G.; Helgen, K. M. (2022). "The Gondwanan Origin of Tribosphenida (Mammalia)". Alcheringa: An Australasian Journal of Palaeontology. 46 (3–4): 277–290. Bibcode:2022Alch...46..277F. doi:10.1080/03115518.2022.2132288. S2CID 253323862.
  393. ^ Velazco, P. M.; Buczek, A. J.; Hoffman, E.; Hoffman, D. K.; O'Leary, M. A.; Novacek, M. J. (2022). "Combined data analysis of fossil and living mammals: a Paleogene sister taxon of Placentalia and the antiquity of Marsupialia". Cladistics. 38 (3): 359–373. doi:10.1111/cla.12499. PMID 35098586. S2CID 246429311.
  394. ^ Bertrand, O. C.; Shelley, S. L.; Williamson, T. E.; Wible, J. R.; Chester, S. G. B.; Flynn, J. J.; Holbrook, L. T.; Lyson, T. R.; Meng, J.; Miller, I. M.; Püschel, H. P.; Smith, T.; Spaulding, M.; Tseng, Z. J.; Brusatte, S. L. (2022). "Brawn before brains in placental mammals after the end-Cretaceous extinction". Science. 376 (6588): 80–85. Bibcode:2022Sci...376...80B. doi:10.1126/science.abl5584. hdl:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20. PMID 35357913. S2CID 247853831.
  395. ^ Goswami, A.; Noirault, E.; Coombs, E. J.; Clavel, J.; Fabre, A.-C.; Halliday, T. J. D.; Churchill, M.; Curtis, A.; Watanabe, A.; Simmons, N. B.; Beatty, B. L.; Geisler, J. H.; Fox, D. L.; Felice, R. N. (2022). "Attenuated evolution of mammals through the Cenozoic". Science. 378 (6618): 377–383. Bibcode:2022Sci...378..377G. doi:10.1126/science.abm7525. hdl:10141/623054. PMID 36302012. S2CID 253183192.
  396. ^ Solé, F.; Fischer, V.; Le Verger, K.; Mennecart, B.; Speijer, R. P.; Peigné, S.; Smith, T. (2022). "Evolution of European carnivorous mammal assemblages through the Palaeogene". Biological Journal of the Linnean Society. 135 (4): 734–753. doi:10.1093/biolinnean/blac002.
  397. ^ Crespo, V. D.; Ríos, M.; Ruiz-Sánchez, F. J.; Montoya, P. (2022). "Cainotheriids vs. lagomorphs: study of their ecological niche partitioning during the early Miocene of the Ribesalbes-Alcora Basin (Castelló, Spain)". Historical Biology: An International Journal of Paleobiology. 34 (8): 1509–1519. Bibcode:2022HBio...34.1509C. doi:10.1080/08912963.2022.2042809. hdl:10550/90599. S2CID 247513211.
  398. ^ Arney, I.; Benefit, B. R.; McCrossin, M. L.; MacLatchy, L.; Kingston, J. D. (2022). "Herbivore isotopic dietary ecology of the middle Miocene Maboko Formation, Kenya". Palaeogeography, Palaeoclimatology, Palaeoecology. 601: Article 111061. Bibcode:2022PPP...60111061A. doi:10.1016/j.palaeo.2022.111061. S2CID 248974509.
  399. ^ Jiangzuo, Q.; Wang, S.-Q. (2022). "Northeastern Asia humidification at the end of the Miocene drives the boost of mammalian dispersals from the Old to New World". Journal of Palaeogeography. 12: 50–68. doi:10.1016/j.jop.2022.09.002. S2CID 252957037.
  400. ^ Cohen, A. S.; Du, A.; Rowan, J.; Yost, C. L.; Billingsley, A. L.; Campisano, C. J.; Brown, E. T.; Deino, A. L.; Feibel, C. S.; Grant, K.; Kingston, J. D.; Lupien, R. L.; Muiruri, V.; Owen, R. B.; Reed, K. E.; Russell, J.; Stockhecke, M. (2022). "Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (16): e2107393119. Bibcode:2022PNAS..11907393C. doi:10.1073/pnas.2107393119. PMC 9169865. PMID 35412903. S2CID 248128445.
  401. ^ Benites-Palomino, A.; Valenzuela-Toro, A. M.; Figueroa-Bravo, C.; Varas-Malca, R. M.; Nielsen, S. N.; Gutstein, C. S.; Carrillo-Biceño, J. D. (2022). "A new marine mammal assemblage from central Chile reveals the Pliocene survival of true seals in South America". Historical Biology: An International Journal of Paleobiology. 34 (11): 2205–2217. Bibcode:2022HBio...34.2205B. doi:10.1080/08912963.2021.2007528. S2CID 245685603.
  402. ^ Fillion, E. N.; Harrison, T.; Kwekason, A. (2022). "A nonanalog Pliocene ungulate community at Laetoli with implications for the paleoecology of Australopithecus afarensis". Journal of Human Evolution. 167: Article 103182. Bibcode:2022JHumE.16703182F. doi:10.1016/j.jhevol.2022.103182. PMID 35428490. S2CID 248141011.
  403. ^ Rowan, J.; Lazagabaster, I. A.; Campisano, C. J.; Bibi, F.; Bobe, R.; Boisserie, J.-R.; Frost, S. R.; Getachew, T.; Gilbert, C. C.; Lewis, M. E.; Melaku, S.; Scott, E.; Souron, A.; Werdelin, L.; Kimbel, W. H.; Reed, K. E. (2022). "Early Pleistocene large mammals from Maka'amitalu, Hadar, lower Awash Valley, Ethiopia". PeerJ. 10: e13210. doi:10.7717/peerj.13210. PMC 8994497. PMID 35411256.
  404. ^ Hanon, R.; Péan, S.; Patou-Mathis, M.; Prat, S.; Rector, A.; Steininger, C. (2022). "Fossil Bovidae from the Hominini-bearing site of Cooper's D (Bloubank Valley, South Africa): implications for Paranthropus robustus Broom, 1938 and early Homo Linnaeus, 1758 habitat preferences". Comptes Rendus Palevol. 21 (21): 431–450. doi:10.5852/cr-palevol2022v21a21. S2CID 248953595.
  405. ^ Agustí, J.; Chochishvili, G.; Lozano-Fernández, I.; Furió, M.; Piñero, P.; de Marfà, R. (2022). "Small mammals (Insectivora, Rodentia, Lagomorpha) from the Early Pleistocene hominin-bearing site of Dmanisi (Georgia)". Journal of Human Evolution. 170: Article 103238. Bibcode:2022JHumE.17003238A. doi:10.1016/j.jhevol.2022.103238. PMID 35988384. S2CID 251704971.
  406. ^ Iltsevich, K. Y.; Sablin, M. V. (2023). "Early Pleistocene Equidae and Suidae from Palan-Tyukan (Azerbaijan)". Historical Biology: An International Journal of Paleobiology. 35 (3): 364–374. Bibcode:2023HBio...35..364I. doi:10.1080/08912963.2022.2043290. S2CID 247118211.
  407. ^ Hu, Y.; Jiang, Q.; Liu, F.; Guo, L.; Zhang, Z.; Zhao, L. (2022). "Calcium isotope ecology of early Gigantopithecus blacki (~2 Ma) in South China". Earth and Planetary Science Letters. 584: Article 117522. Bibcode:2022E&PSL.58417522H. doi:10.1016/j.epsl.2022.117522. S2CID 248008680.
  408. ^ Marom, N.; Lazagabaster, I. A.; Shafir, R.; Natalio, F.; Eisenmann, V.; Horwitz, L. K. (2022). "The Late Middle Pleistocene mammalian fauna of Oumm Qatafa Cave, Judean Desert: taxonomy, taphonomy and palaeoenvironment". Journal of Quaternary Science. 37 (4): 612–638. Bibcode:2022JQS....37..612M. doi:10.1002/jqs.3414. PMC 9314136. PMID 35915614. S2CID 247463574.
  409. ^ Sirocko, F.; Albert, J.; Britzius, S.; Dreher, F.; Martínez-García, A.; Dosseto, A.; Burger, J.; Terberger, T.; Haug, G. (2022). "Thresholds for the presence of glacial megafauna in central Europe during the last 60,000 years". Scientific Reports. 12 (1). 20055. Bibcode:2022NatSR..1220055S. doi:10.1038/s41598-022-22464-x. PMC 9681729. PMID 36414639.
  410. ^ Magyari, E. K.; Gasparik, M.; Major, I.; Lengyel, G.; Pál, I.; Virág, A.; Korponai, J.; Haliuc, A.; Szabó, Z.; Pazonyi, P. (2022). "Mammal extinction facilitated biome shift and human population change during the last glacial termination in East-Central Europe". Scientific Reports. 12 (1): Article number 6796. Bibcode:2022NatSR..12.6796M. doi:10.1038/s41598-022-10714-x. PMC 9043214. PMID 35474321.
  411. ^ Fraser, D.; Villaseñor, A.; Tóth, A. B.; Balk, M. A.; Eronen, J. T.; Barr, W. A.; Behrensmeyer, A. K.; Davis, M.; Du, A.; Faith, J. T.; Graves, G. R.; Gotelli, N. J.; Jukar, A. M.; Looy, C. V.; McGill, B. J.; Miller, J. H.; Pineda-Munoz, S.; Potts, R.; Shupinski, A. B.; Soul, L. C.; Lyons, S. K. (2022). "Late Quaternary biotic homogenization of North American mammalian faunas". Nature Communications. 13 (1): Article number 3940. Bibcode:2022NatCo..13.3940F. doi:10.1038/s41467-022-31595-8. PMC 9270452. PMID 35803946.
  412. ^ Smith, F. A.; Elliott Smith, E. A.; Villaseñor, A.; Tomé, C. P.; Lyons, S. K.; Newsome, S. D. (2022). "Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community". Proceedings of the National Academy of Sciences of the United States of America. 119 (39). e2115015119. Bibcode:2022PNAS..11915015S. doi:10.1073/pnas.2115015119. PMC 9522422. PMID 36122233.
  413. ^ Dembitzer, J.; Castiglione, S.; Raia, P.; Meiri, S. (2022). "Small brains predisposed Late Quaternary mammals to extinction". Scientific Reports. 12 (1): Article number 3453. Bibcode:2022NatSR..12.3453D. doi:10.1038/s41598-022-07327-9. PMC 8971383. PMID 35361771.
  414. ^ Toivonen, J.; Fortelius, M.; Žliobaitė, I. (2022). "Do species factories exist? Detecting exceptional patterns of evolution in the mammalian fossil record". Proceedings of the Royal Society B: Biological Sciences. 289 (1972): Article ID 20212294. doi:10.1098/rspb.2021.2294. PMC 8984811. PMID 35382595. S2CID 247955848.
  415. ^ DeSantis, L. R. G.; Pardi, M. I.; Du, A.; Greshko, M. A.; Yann, L. T.; Hulbert, R. C.; Louys, J. (2022). "Global long-term stability of individual dietary specialization in herbivorous mammals". Proceedings of the Royal Society B: Biological Sciences. 289 (1968): Article ID 20211839. doi:10.1098/rspb.2021.1839. PMC 8826132. PMID 35135353.
  416. ^ Gibert, C.; Zacaï, A.; Fluteau, F.; Ramstein, G.; Chavasseau, O.; Thiery, G.; Souron, A.; Banks, W.; Guy, F.; Barboni, D.; Sepulchre, P.; Blondel, C.; Merceron, G.; Otero, O. (2022). "A coherent biogeographical framework for Old World Neogene and Pleistocene mammals" (PDF). Palaeontology. 65 (2): e12594. Bibcode:2022Palgy..6512594G. doi:10.1111/pala.12594. S2CID 248148727.
  417. ^ Feijó, A.; Ge, D.; Wen, Z.; Cheng, J.; Xia, L.; Patterson, B. D.; Yang, Q. (2022). "Mammalian diversification bursts and biotic turnovers are synchronous with Cenozoic geoclimatic events in Asia". Proceedings of the National Academy of Sciences of the United States of America. 119 (49). e2207845119. Bibcode:2022PNAS..11907845F. doi:10.1073/pnas.2207845119. PMC 9894185. PMID 36442115.
  418. ^ Fricke, E. C.; Hsieh, C.; Middleton, O.; Gorczynski, D.; Cappello, C. D.; Sanisidro, O.; Rowan, J.; Svenning, J.-C.; Beaudrot, L. (2022). "Collapse of terrestrial mammal food webs since the Late Pleistocene". Science. 377 (6609): 1008–1011. Bibcode:2022Sci...377.1008F. doi:10.1126/science.abn4012. PMID 36007038. S2CID 251843290.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya