Amidines are organic compounds with the functional group RC(NR)NR2, where the R groups can be the same or different. They are the imine derivatives of amides (RC(O)NR2). The simplest amidine is formamidine, HC(=NH)NH2.
Amidines are much more basic than amides and are among the strongest uncharged/unionized bases.[6][7]
Protonation occurs at the sp2-hybridized nitrogen. This occurs because the positive charge can be delocalized onto both nitrogen atoms. The resulting cationic species is known as an amidinium ion[8] and possesses identical C-N bond lengths.
Formally, amidines are a class of oxoacids. The oxoacid from which an amidine is derived must be of the form RnE(=O)OH, where R is a substituent. The −OH group is replaced by an −NH2 group and the =O group is replaced by =NR, giving amidines the general structure RnE(=NR)NR2.[10][11][12] When the parent oxoacid is a carboxylic acid, the resulting amidine is a carboxamidine or carboximidamide (IUPAC name). Carboxamidines are frequently referred to simply as amidines, as they are the most commonly encountered type of amidine in organic chemistry.
Derivatives
Formamidinium cations
A notable subclass of amidinium ions are the formamidinium cations; which can be represented by the chemical formula [R 2N−CH=NR 2]+ . Deprotonation of these gives stable carbenes which can be represented by the chemical formula R 2N−C:−NR 2.[13][14]
Amidinate salts
An amidinate salt has the general structure M+[RNRCNR]− and can be accessed by reaction of a carbodiimide with an organometallic compound such as methyl lithium.[16] They are used widely as ligands in organometallic complexes.
See also
Guanidines — a similar group of compounds where the central carbon atom is bonded to three nitrogen atoms.
^Daniel A. Dickman; Michael Boes; Albert I. Meyers (1989). "(S)-N,N-Dimethyl-N'-(1-tert-Butoxy-3-Methyl-2-Butyl)formamidine". Organic Syntheses. 67: 52. doi:10.15227/orgsyn.067.0052.
^Arthur C. Hontz, E. C. Wagner (1951). "N,N-Diphenylbenzamidine". Organic Syntheses. 31: 48. doi:10.15227/orgsyn.031.0048.
^Roche VF. Improving Pharmacy Students’ Understanding and Long-term Retention of Acid-Base Chemistry. American Journal of Pharmaceutical Education. 2007;71(6):122.
^Alder, Roger W.; Blake, Michael E.; Bufali, Simone; Butts, Craig P.; Orpen, A. Guy; Schütz, Jan; Williams, Stuart J. (2001). "Preparation of tetraalkylformamidinium salts and related species as precursors to stable carbenes". Journal of the Chemical Society, Perkin Transactions 1 (14): 1586–1593. doi:10.1039/B104110J.
^Edward C. Taylor; Wendell A. Ehrhart; M. Kawanisi (1966). "Formamidine Acetate". Organic Syntheses. 46: 39. doi:10.15227/orgsyn.046.0039.
^Keaton, Richard J.; Jayaratne, Kumudini C.; Henningsen, David A.; Koterwas, Lisa A.; Sita, Lawrence R. (2001). "Dramatic Enhancement of Activities for Living Ziegler−Natta Polymerizations Mediated by "Exposed" Zirconium Acetamidinate Initiators: The Isospecific Living Polymerization of Vinylcyclohexane". Journal of the American Chemical Society. 123 (25): 6197–6198. doi:10.1021/ja0057326. PMID11414862.
^Ulrich, Henri (2007). Chemistry and technology of carbodiimides. Chichester, England: John Wiley & Sons. ISBN9780470065105.