Reed, Bruce A. (1992), "Finding approximate separators and computing tree width quickly", Proc. 24th Annual ACM Symposium on Theory of computing, pp. 221–228, doi:10.1145/129712.129734, ISBN978-0897915113, S2CID16259988.
MR95.
Molloy, Michael; Reed, Bruce (1995), "A critical point for random graphs with a given degree sequence", Random Structures & Algorithms, 6 (2–3): 161–179, doi:10.1002/rsa.3240060204, MR1370952.
R97.
Reed, B. A. (1997), "Tree width and tangles: a new connectivity measure and some applications", Surveys in combinatorics, 1997 (London), London Math. Soc. Lecture Note Ser., vol. 241, Cambridge: Cambridge Univ. Press, pp. 87–162, doi:10.1017/CBO9780511662119.006, ISBN9780511662119, MR1477746.
Reed, Bruce; Sudakov, Benny (2002), "List colouring of graphs with at most (2 − o(1))χ vertices", Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, pp. 587–603, arXiv:math/0304467, Bibcode:2003math......4467R, MR1957563.
Books
MR02.
Molloy, Michael; Reed, Bruce (2002), Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, vol. 23, Berlin: Springer-Verlag, ISBN978-3-540-42139-9.[11]