Catatumbo lightning (Spanish: Relámpago del Catatumbo)[1] is an atmospheric phenomenon that occurs over the mouth of the Catatumbo River where it empties into Lake Maracaibo in Venezuela. Catatumbo means "House of Thunder" in the language of the Bari people.[2] It originates from a mass of storm clouds at an altitude of more than 1 km (0.6 mi), and occurs for 140 to 160 nights a year, nine hours per day, and with lightning flashes from 16 to 40 times per minute.[3] It occurs over and around Lake Maracaibo, typically over a bog area formed where the Catatumbo River flows into the lake.[4] The phenomenon sees the highest density of lightning in the world, at 250 per km2.[5] In summers, the phenomenon may even occur as dry lightning without rainfall.[6]
The lightning changes its flash frequency throughout the year, and it is different from year to year. For example, it ceased from January to March 2010, apparently due to drought, leading to speculation that it might have been extinguished permanently.[7][3][8]
Russian researcher Andrei Zavrotsky investigated the area several times. He concluded that the lightning has several epicenters in the marshes of Juan Manuel de Aguas National Park, Claras Aguas Negras, and western Lake Maracaibo. In 1991, he suggested that the phenomenon occurred due to cold and warm air currents meeting around the area. The study also speculated that an isolated cause for the lightning might be the presence of uranium in the bedrock.[11]
Between 1997 and 2000, a series of four studies proposed that the methane produced by the swamps and the massive oil deposits in the area were a major cause of the phenomenon.[12] The methane model is based on the symmetry properties of methane.[clarification needed] Other studies have indicated that this model is contradicted by the observed behavior of the lightning, as it would predict that there would be more lightning in the dry season (January–February), and less in the wet season (April–May and September–October).[13][14]
A 2016 study showed that it is possible to forecast lightning in the Lake Maracaibo basin up to a few months in advance, based in the variability of the Lake Maracaibo Low-Level Jet and its interactions with predictable climate modes like the ENSO and the Caribbean Low-Level Jet. The study also showed that the forecast accuracy is significantly higher when an index based on a combination of winds and convective available potential energy (CAPE) is used. The index seems to capture well the compound effect of multiple climate drivers.[20]
Historical references
There are several references by colonial Portuguese and Spanish sources, that name this phenomenon as "Lanterns of Saint Anthony" or the "Lighthouse of Maracaibo", as also noted by Alexander Walker in 1822.[21] Based on M. Palacios book "Viage de Varinas", Prussian naturalist and explorer Alexander von Humboldt described the lightning in 1826.[22]Italian geographer Agustin Codazzi described it in 1841 as "like a continuous lightning, and its position such that, located almost on the meridian of the mouth of the lake, it directs the navigators as a lighthouse."[23]
Cultural impact
The phenomenon is depicted on the flag and coat of arms of the state of Zulia, which also contains Lake Maracaibo, and is mentioned in the state's anthem. The phenomenon has been known for centuries as the "Lighthouse of Maracaibo", since it is visible for miles around Lake Maracaibo.[24]
Some authors have misinterpreted a reference to a glow in the night sky in Lope de Vega's description in his epic, "La Dragontea" of the attack against San Juan de Puerto Rico by Sir Francis Drake as an early literary allusion to the lightning (since in another verse the poet does mention Maracaibo), but it was actually a reference to the glow produced by burning ships during the battle.[25]
^ abAlbrecht, R., et al., 2011. The 13 years of TRMM Lightning Imaging Sensor: from individual flash characteristics to decadal tendencies. XIV Int. Conf. Atmos. Elec., Rio de Janeiro, Brazil.
^ abBürgesser, R. E.; Nicora, M. G.; Ávila, E. E. (2012). "Characterization of the lightning activity of "Relámpago del Catatumbo". Journal of Atmospheric and Solar-Terrestrial Physics. 77: 241–247. Bibcode:2012JASTP..77..241B. doi:10.1016/j.jastp.2012.01.013.
^Muñoz, Á.G.; Díaz-Lobatón, J.; Chourio, X.; Stock, J. (2016). "Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers". Atmospheric Research. 172–173: 147–162. Bibcode:2016AtmRe.172..147M. doi:10.1016/j.atmosres.2015.12.018.
^Muñoz, Á.G., Díaz-Lobatón, J., 2011: "The Catatumbo Lightnings: A review", Memoirs of the XIV International Conference on Atmospheric Electricity. Brazil.
^Torrealba, E.; Amador, J. (2010). "La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América". Revista de Climatología. 10: 1–20.
^Muñoz, Á.G., Díaz-Lobatón, J., 2012: Los Relámpagos del Catatumbo y el Flujo Energético Medio en la Cuenca del Lago de Maracaibo. Reporte público CMC-GEO-DDI-02-2011. Centro de Modelado Científico. Universidad del Zulia. 12 p. En http://cmc.org.ve/portal/archivo.php?archivo=241
^Muñoz, Á.G., Núñez, A., Chourio, X., Díaz-Lobatón, J., Márquez, R., Moretto, P., Juárez, M., Casanova, V., Quintero, A., Zurita, D., Colmenares, V., Vargas, L., Salcedo, M.L., Padrón, R., Contreras, L., Parra, H., Vaughan, C., Smith, D., 2015: Reporte Final de la Expedición Catatumbo: Abril 2015. Reporte Público CMC-01-2015. Centro de Modelado Científico (CMC). Universidad del Zulia. 20 p. doi:10.13140/RG.2.1.1351.0566