In graph theory, a clique (/ˈkliːk/ or /ˈklɪk/) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.
A clique, C, in an undirected graphG = (V, E) is a subset of the vertices, C ⊆ V, such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly.
A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique. Some authors define cliques in a way that requires them to be maximal, and use other terminology for complete subgraphs that are not maximal.
A maximum clique of a graph, G, is a clique, such that there is no clique with more vertices. Moreover, the clique numberω(G) of a graph G is the number of vertices in a maximum clique in G.
The intersection number of G is the smallest number of cliques that together cover all edges of G.
The clique cover number of a graph G is the smallest number of cliques of G whose union covers the set of vertices V of the graph.
A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset.[2]
The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph.
Mathematical results concerning cliques include the following.
Turán's theorem gives a lower bound on the size of a clique in dense graphs.[3] If a graph has sufficiently many edges, it must contain a large clique. For instance, every graph with vertices and more than edges must contain a three-vertex clique.
According to a result of Moon & Moser (1965), a graph with 3n vertices can have at most 3n maximal cliques. The graphs meeting this bound are the Moon–Moser graphs K3,3,..., a special case of the Turán graphs arising as the extremal cases in Turán's theorem.
A chordal graph is a graph whose vertices can be ordered into a perfect elimination ordering, an ordering such that the neighbors of each vertex v that come later than v in the ordering form a clique.
A cograph is a graph all of whose induced subgraphs have the property that any maximal clique intersects any maximal independent set in a single vertex.
An interval graph is a graph whose maximal cliques can be ordered in such a way that, for each vertex v, the cliques containing v are consecutive in the ordering.
A line graph is a graph whose edges can be covered by edge-disjoint cliques in such a way that each vertex belongs to exactly two of the cliques in the cover.
A simplex graph is an undirected graph κ(G) with a vertex for every clique in a graph G and an edge connecting two cliques that differ by a single vertex. It is an example of median graph, and is associated with a median algebra on the cliques of a graph: the median m(A,B,C) of three cliques A, B, and C is the clique whose vertices belong to at least two of the cliques A, B, and C.[5]
The clique-sum is a method for combining two graphs by merging them along a shared clique.
Clique-width is a notion of the complexity of a graph in terms of the minimum number of distinct vertex labels needed to build up the graph from disjoint unions, relabeling operations, and operations that connect all pairs of vertices with given labels. The graphs with clique-width one are exactly the disjoint unions of cliques.
The intersection number of a graph is the minimum number of cliques needed to cover all the graph's edges.
The word "clique", in its graph-theoretic usage, arose from the work of Luce & Perry (1949), who used complete subgraphs to model cliques (groups of people who all know each other) in social networks. The same definition was used by Festinger (1949) in an article using less technical terms. Both works deal with uncovering cliques in a social network using matrices. For continued efforts to model social cliques graph-theoretically, see e.g. Alba (1973), Peay (1974), and Doreian & Woodard (1994).
Many different problems from bioinformatics have been modeled using cliques. For instance, Ben-Dor, Shamir & Yakhini (1999) model the problem of clustering gene expression data as one of finding the minimum number of changes needed to transform a graph describing the data into a graph formed as the disjoint union of cliques; Tanay, Sharan & Shamir (2002) discuss a similar biclustering problem for expression data in which the clusters are required to be cliques. Sugihara (1984) uses cliques to model ecological niches in food webs. Day & Sankoff (1986) describe the problem of inferring evolutionary trees as one of finding maximum cliques in a graph that has as its vertices characteristics of the species, where two vertices share an edge if there exists a perfect phylogeny combining those two characters. Samudrala & Moult (1998) model protein structure prediction as a problem of finding cliques in a graph whose vertices represent positions of subunits of the protein. And by searching for cliques in a protein–protein interaction network, Spirin & Mirny (2003) found clusters of proteins that interact closely with each other and have few interactions with proteins outside the cluster. Power graph analysis is a method for simplifying complex biological networks by finding cliques and related structures in these networks.
In electrical engineering, Prihar (1956) uses cliques to analyze communications networks, and Paull & Unger (1959) use them to design efficient circuits for computing partially specified Boolean functions. Cliques have also been used in automatic test pattern generation: a large clique in an incompatibility graph of possible faults provides a lower bound on the size of a test set.[7]Cong & Smith (1993) describe an application of cliques in finding a hierarchical partition of an electronic circuit into smaller subunits.
Barthélemy, J.-P.; Leclerc, B.; Monjardet, B. (1986), "On the use of ordered sets in problems of comparison and consensus of classifications", Journal of Classification, 3 (2): 187–224, doi:10.1007/BF01894188, S2CID6092438.
Day, William H. E.; Sankoff, David (1986), "Computational complexity of inferring phylogenies by compatibility", Systematic Zoology, 35 (2): 224–229, doi:10.2307/2413432, JSTOR2413432.
Doreian, Patrick; Woodard, Katherine L. (1994), "Defining and locating cores and boundaries of social networks", Social Networks, 16 (4): 267–293, doi:10.1016/0378-8733(94)90013-2.
Hamzaoglu, I.; Patel, J. H. (1998), "Test set compaction algorithms for combinational circuits", Proc. 1998 IEEE/ACM International Conference on Computer-Aided Design, pp. 283–289, doi:10.1145/288548.288615, ISBN978-1581130089, S2CID12258606.
Karp, Richard M. (1972), "Reducibility among combinatorial problems", in Miller, R. E.; Thatcher, J. W. (eds.), Complexity of Computer Computations(PDF), New York: Plenum, pp. 85–103, archived from the original(PDF) on 2011-06-29, retrieved 2009-12-13.
Kuhl, F. S.; Crippen, G. M.; Friesen, D. K. (1983), "A combinatorial algorithm for calculating ligand binding", Journal of Computational Chemistry, 5 (1): 24–34, doi:10.1002/jcc.540050105, S2CID122923018.
Paull, M. C.; Unger, S. H. (1959), "Minimizing the number of states in incompletely specified sequential switching functions", IRE Transactions on Electronic Computers, EC-8 (3): 356–367, doi:10.1109/TEC.1959.5222697.
Rhodes, Nicholas; Willett, Peter; Calvet, Alain; Dunbar, James B.; Humblet, Christine (2003), "CLIP: similarity searching of 3D databases using clique detection", Journal of Chemical Information and Computer Sciences, 43 (2): 443–448, doi:10.1021/ci025605o, PMID12653507.
Sugihara, George (1984), "Graph theory, homology and food webs", in Levin, Simon A. (ed.), Population Biology, Proc. Symp. Appl. Math., vol. 30, pp. 83–101.