Complement C2 is a protein that in humans is encoded by the C2gene.[5] The protein encoded by this gene is part of the classical pathway of the complement system, acting as a multi-domain serine protease. Deficiency of C2 has been associated with certain autoimmune diseases.[5]
The Complement system is generated to regulate self protection from infection. The overall Complement system is composed of protein groups that collaborate in destroying foreign invaders, which ultimately remove debris from cells and tissues. When the body detects a foreign invader, the body signals the Complement system and the Complement component 2 protein attaches to Complement system 4 resulting in an immune response. Complement component 2 protein is critical for regulating the body's immune response.
Function
In the classical and lectin pathways of complement activation, formation of the C3-convertase and C5-convertases requires binding of C2 to an activated surface-bound C4b in the presence of Mg2+; the resultant C4bC2 complex is cleaved by C1s or MASP2 into C2a and C2b. It is thought that cleavage of C2 by C1s, while bound to C4b, results in a conformational rotation of C2b whereas the released C2a fragment may retain most of its original structure.
C2b is the smallest, enzymatically active, fragment of C3 convertase in this pathway, C4b2b (NB: some sources now refer to the larger fragment of C2 as C2b, making the C3 convertase C4b2b, whereas older sources refer to the larger fragment of C2 as C2a, making the C3 convertase C4b2a). The smaller fragment, C2a (or C2b, depending on the source) is released into the fluid phase.[6]
Complement Component 2 Deficiency
In the Molecular Biology, the deficiency of Complement Component 2 i s a disorder that causes a major effect in the immune system, resulting in a form of immunodeficiency. This effect results in an inability to protect the body against any foreign invader. Complement component 2 deficiency is also connected with an increased risk of developing autoimmune disorders, such as systemic vasculitis. Complement deficiencies is a challenge to understand due to insufficient clinical trails. Using a hemolytic-plaque assay, RNA extraction, and blot analysis, it is fair to note that complement component 2 deficiency is a result of pre-translational regulatory detect in C2 gene expression.[7] This detects a lack of synthesis within the C2 protein. This deficiency can be further understood by incorporating plasma protein deficiencies, especially those in tissue macrophages. It is also important to note that Complement component 2 deficiency can be caused by genetic and environmental factors. In genetic inheritance, Autosomal recessive conditions are inherited with mutations in both copies of the gene where parents of autosomal recessive condition typically do not show symptoms.
Development of SLE
Complement component 2 deficiency is associated with an increased risk of developing autoimmune disorders, with females more likely to have SLE. Systemic lupus erythematosus (lupus) is a chronic autoimmune disease that causes inflammation and tissue damage, affecting many parts of the body. Lupus can range from mild to severe and can cause inflammation in organs, such as joints, skin, kidneys, and brain. The severity of the disorder varies.
C2 is an important component of both the classical and lectin pathways of complement activation, and is essential for first line defense against microbial infection. It binds to MBL or ficolins to form the C3 convertase C4b2a. In C2 deficiency, C3 is not efficiently cleaved, leading to limited deposition of C3 fragments on immune complexes and apoptotic cells, leading to chronic activation of the complement system.
Treatment and Management
Complement deficiency is managed on a case-by-case basis with antibiotics and regular visits with an immunologist. A form to treat complement component 2 deficiency includes replacing the missing component of the cascade, either through direct infusion of the protein or through gene therapy. Patients should be aware of symptoms of meningococcal infection and receive routine vaccinations. Patients should seek for accessible resources offered by the medical provider and take the necessary actions needed to treat for complement deficiency.
Patient Education
Patients and parents should be educated on the symptoms of serious illness and seek care immediately. Vaccination is an important preventive measure for the deficiency of complement component 2. Early diagnosis, antibiotic prophylaxis, and vaccinations can help prevent life-threatening infections in hereditary C2 deficiency.
Promoting Health Care Outcomes
The interprofessional team must be aware of the clinical features of patients with complement deficiency or immunodeficiency, and refer them to allergist/immunologists when necessary. Infection prevention and treatment of infections are key for complement deficiencies.[8]
Patient organizations build public awareness and support research to improve patients' lives. Patient organizations provide access to information, resources, and support.
Clinical Significance
Photosensitive patients with C2 type I deficiency have poor prognosis. C2 type I deficiency is caused by a 28-base pair gene deletion, resulting in premature termination codon and lack of C2 protein. Patients with LE associated with complement C4 or C2 deficiencies have a better prognosis than those without inherited deficiencies. Complement component 2 deficiency increases risk of autoimmune disorders which may be managed by receiving the adequate care. Clinically, this is significant since Complement component 2 deficiency increases the risk of recurrent bacterial infections, which may be life-threatening.
Other Names
There are numerous forms of naming this gene. For example:
^Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Auto-antibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus (2011) 20:250–5. doi:10.1177/0961203310385738
Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore). 2005Jan;84(1):23-34. doi: 10.1097/01.md.0000152371.22747.1e. Citation on PubMed (https://pubmed.ncb[permanent dead link] i.nlm.nih.gov/15643297)
Complement+2 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Sjöholm AG, Jönsson G, Braconier JH, Sturfelt G, Truedsson L. Complement deficiency and disease: an update. Mol Immunol. 2006 Jan;43(1-2):78-85. doi: 10.1016/j.molimm.2005.06.025. PMID 16026838.
Lappin DF, Birnie GD, Whaley K (Nov 1990). "Interferon-mediated transcriptional and post-transcriptional modulation of complement gene expression in human monocytes". European Journal of Biochemistry. 194 (1): 177–184. doi:10.1111/j.1432-1033.1990.tb19443.x. PMID1701385.
Cole FS, Whitehead AS, Auerbach HS, Lint T, Zeitz HJ, Kilbridge P, Colten HR (Jul 1985). "The molecular basis for genetic deficiency of the second component of human complement". The New England Journal of Medicine. 313 (1): 11–16. doi:10.1056/NEJM198507043130103. PMID2582254.
Wu LC, Morley BJ, Campbell RD (Jan 1987). "Cell-specific expression of the human complement protein factor B gene: evidence for the role of two distinct 5'-flanking elements". Cell. 48 (2): 331–342. doi:10.1016/0092-8674(87)90436-3. PMID3643061. S2CID32752642.
Gagnon J (Sep 1984). "Structure and activation of complement components C2 and factor B". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 306 (1129): 301–309. Bibcode:1984RSPTB.306..301G. doi:10.1098/rstb.1984.0091. PMID6149575.
Liu C-C, Ahearn JM. Complement and systemic lupus erythematosus. 7th ed. In: Wallace DJ, Hahn BH, editors. Dubois’ Lupus Erythematosus. (Chap. 13), Philadelphia: Lippincott Williams & Wilkins (2007). p. 214–35.
Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus. Trends Mol Med (2012) 18:101–8. doi:10.1016/j.molmed.2011.10.005
Ippolito A, Wallace DJ, Gladman D, Fortin PR, Urowitz M, Werth V, et al. Auto-antibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity. Lupus (2011) 20:250–5. doi:10.1177/0961203310385738
Outer surface lipoproteins from the Lyme disease spirochete exploit the molecular switch mechanism of the complement protease C1s. arrigues et al.Journal of Biological ChemistrySeptember 29, 2022
Paip2A inhibits translation by competitively binding to the RNA recognition motifs of PABPC1 and promoting its dissociation from the poly(A) tail
Sagae et al.Journal of Biological ChemistryMarch 17, 2022