Copper(II) nitrate
Copper(II) nitrate describes any member of the family of inorganic compounds with the formula Cu(NO3)2(H2O)x. The hydrates are hygroscopic blue solids. Anhydrous copper nitrate forms blue-green crystals and sublimes in a vacuum at 150-200 °C.[5][6] Common hydrates are the hemipentahydrate and trihydrate. Synthesis and reactionsHydrated copper(II) nitrateHydrated copper nitrate is prepared by treating copper metal or its oxide with nitric acid:[7]
The same salts can be prepared treating copper metal with an aqueous solution of silver nitrate. That reaction illustrates the ability of copper metal to reduce silver ions. In aqueous solution, the hydrates exist as the aqua complex [Cu(H2O)6]2+. Such complexes are highly labile and subject to rapid ligand exchange due to the d9 electronic configuration of copper(II). Attempted dehydration of any of the hydrated copper(II) nitrates by heating affords the oxides, not Cu(NO3)2.[6] At 80 °C the hydrates convert to "basic copper nitrate", Cu2(NO3)(OH)3, which converts to CuO at 180 °C.[7] Exploiting this reactivity, copper nitrate can be used to generate nitric acid by heating it until decomposition and passing the fumes directly into water. This method is similar to the last step in the Ostwald process. The equations are as follows:
Treatment of copper(II) nitrate solutions with triphenylphosphine, triphenylarsine, and triphenylstibine gives the corresponding copper(I) complexes [Cu(EPh3)3]NO3 (E = P, As, Sb; Ph = C6H5). The group V ligand is oxidized to the oxide.[8] Anhydrous copper(II) nitrateAnhydrous Cu(NO3)2 is one of the few anhydrous transition metal nitrates.[9] It cannot be prepared by reactions containing or producing water. Instead, anhydrous Cu(NO3)2 forms when copper metal is treated with dinitrogen tetroxide:[6]
StructureAnhydrous copper(II) nitrateTwo polymorphs of anhydrous copper(II) nitrate, α and β, are known.[6] Both polymorphs are three-dimensional coordination polymer networks with infinite chains of copper(II) centers and nitrate groups. The α form has only one Cu environment, with [4+1] coordination,[1] but the β form has two different copper centers, one with [4+1] and one that is square planar.[2] The nitromethane solvate also features "[4+1] coordination", with four short Cu-O bonds of approximately 200 pm and one longer bond at 240 pm.[10] Heating solid anhydrous copper(II) nitrate under a vacuum to 150-200 °C leads to sublimation and "cracking" to give a vapour of monomeric copper(II) nitrate molecules.[6][11] In the vapour phase, the molecule features two bidentate nitrate ligands.[12] Hydrated copper(II) nitrateFive hydrates have been reported: the monohydrate (Cu(NO3)2·2H2O),[2] the sesquihydrate (Cu(NO3)2·1.5H2O),[13] the hemipentahydrate (Cu(NO3)2·2.5H2O),[14] a trihydrate (Cu(NO3)2·3H2O),[15] and a hexahydrate ([Cu(OH2)6](NO3)2.[16] The crystal structure of the hexahydrate appeared to show six almost equal Cu–O distances, not revealing the usual effect of a Jahn-Teller distortion that is otherwise characteristic of octahedral Cu(II) complexes. This non-effect was attributed to the strong hydrogen bonding that limits the elasticity of the Cu-O bonds but it is probably due to nickel being misidentified as copper in the refinement. ApplicationsCopper(II) nitrate finds a variety of applications, the main one being its conversion to copper(II) oxide, which is used as catalyst for a variety of processes in organic chemistry. Its solutions are used in textiles and polishing agents for other metals. Copper nitrates are found in some pyrotechnics.[7] It is often used in school laboratories to demonstrate chemical voltaic cell reactions. It is a component in some ceramic glazes and metal patinas. Organic synthesisCopper nitrate, in combination with acetic anhydride, is an effective reagent for nitration of aromatic compounds, known as the Menke nitration.[17] Hydrated copper nitrate adsorbed onto clay affords a reagent called "Claycop". The resulting blue-colored clay is used as a slurry, for example for the oxidation of thiols to disulfides. Claycop is also used to convert dithioacetals to carbonyls.[18] A related reagent based on montmorillonite has proven useful for the nitration of aromatic compounds.[19] ElectrowinningCopper(II) nitrate may also be used for copper electrowinning on small scale with a ammonia (NH3) as a byproduct.[20] Naturally occurring copper nitratesNo mineral of the ideal Cu(NO3) formula, or the hydrates, are known. Likasite, Cu3(NO3)(OH)5·2H2O and buttgenbachite, Cu19(NO3)2(OH)32Cl4·2H2O are related minerals.[21][22] Natural basic copper nitrates include the rare minerals gerhardtite and rouaite, both being polymorphs of Cu2(NO3)(OH)3.[23][24][25] A much more complex, basic, hydrated and chloride-bearing natural salt is buttgenbachite.[22][25] References
External linksWikimedia Commons has media related to Copper(II) nitrate. |