Let μ be a large countable ordinal such that to every limit ordinal α < μ there is assigned a fundamental sequence (a strictly increasing sequence of ordinals whose supremum is α). A fast-growing hierarchy of functions fα: N → N, for α < μ, is then defined as follows:
if α is a limit ordinal.
Here fαn(n) = fα(fα(...(fα(n))...)) denotes the nthiterate of fα applied to n, and α[n] denotes the nth element of the fundamental sequence assigned to the limit ordinal α. (An alternative definition takes the number of iterations to be n+1, rather than n, in the second line above.)
The initial part of this hierarchy, comprising the functions fα with finite index (i.e., α < ω), is often called the Grzegorczyk hierarchy because of its close relationship to the Grzegorczyk hierarchy; note, however, that the former is here an indexed family of functions fn, whereas the latter is an indexed family of sets of functions . (See Points of Interest below.)
Generalizing the above definition even further, a fast iteration hierarchy is obtained by taking f0 to be any non-decreasing function g: N → N.
For limit ordinals not greater than ε0, there is a straightforward natural definition of the fundamental sequences (see the Wainer hierarchy below), but beyond ε0 the definition is much more complicated. However, this is possible well beyond the Feferman–Schütte ordinal, Γ0, up to at least the Bachmann–Howard ordinal. Using Buchholz psi functions one can extend this definition easily to the ordinal of transfinitely iterated -comprehension (see Analytical hierarchy).
A fully specified extension beyond the recursive ordinals is thought to be unlikely; e.g., Prӧmel et al. [1991](p. 348) note that in such an attempt "there would even arise problems in ordinal notation".
The Wainer hierarchy
The Wainer hierarchy is the particular fast-growing hierarchy of functions fα (α ≤ ε0) obtained by defining the fundamental sequences as follows [Gallier 1991][Prӧmel, et al., 1991]:
if λ = ωα1 + ... + ωαk−1 + ωαk for α1 ≥ ... ≥ αk−1 ≥ αk, then λ[n] = ωα1 + ... + ωαk−1 + ωαk[n],
if λ = ωα+1, then λ[n] = ωαn,
if λ = ωα for a limit ordinal α, then λ[n] = ωα[n],
and
if λ = ε0, take λ[0] = 0 and λ[n + 1] = ωλ[n] as in [Gallier 1991]; alternatively, take the same sequence except starting with λ[0] = 1 as in [Prӧmel, et al., 1991]. For n > 0, the alternative version has one additional ω in the resulting exponential tower, i.e. λ[n] = ωω⋰ω with n omegas.
Some authors use slightly different definitions (e.g., ωα+1[n] = ωα(n+1), instead of ωαn), and some define this hierarchy only for α < ε0 (thus excluding fε0 from the hierarchy).
Following are some relevant points of interest about fast-growing hierarchies:
Every fα is a total function. If the fundamental sequences are computable (e.g., as in the Wainer hierarchy), then every fα is a total computable function.
In the Wainer hierarchy, fα is dominated by fβ if α < β. (For any two functions f, g: N → N, f is said to dominateg if f(n) > g(n) for all sufficiently large n.) The same property holds in any fast-growing hierarchy with fundamental sequences satisfying the so-called Bachmann property. (This property holds for most natural well orderings.)[clarification needed]
In the Grzegorczyk hierarchy, every primitive recursive function is dominated by some fα with α < ω. Hence, in the Wainer hierarchy, every primitive recursive function is dominated by fω, which is a variant of the Ackermann function.
For n ≥ 3, the set in the Grzegorczyk hierarchy is composed of just those total multi-argument functions which, for sufficiently large arguments, are computable within time bounded by some fixed iterate fn-1k evaluated at the maximum argument.
In the Wainer hierarchy, every fα with α < ε0 is computable and provably total in Peano arithmetic.
Every computable function that is provably total in Peano arithmetic is dominated by some fα with α < ε0 in the Wainer hierarchy. Hence fε0 in the Wainer hierarchy is not provably total in Peano arithmetic.
The Goodstein function has approximately the same growth rate (i.e. each is dominated by some fixed iterate of the other)[citation needed] as fε0 in the Wainer hierarchy, dominating every fα for which α < ε0, and hence is not provably total in Peano Arithmetic.
In the Wainer hierarchy, if α < β < ε0, then fβ dominates every computable function within time and space bounded by some fixed iterate fαk.
Friedman's TREE function dominates fΓ0 in a fast-growing hierarchy described by Gallier (1991).
The Wainer hierarchy of functions fα and the Hardy hierarchy of functions hα are related by fα = hωα for all α < ε0. The Hardy hierarchy "catches up" to the Wainer hierarchy at α = ε0, such that fε0 and hε0 have the same growth rate, in the sense that fε0(n-1) ≤ hε0(n) ≤ fε0(n+1) for all n ≥ 1. (Gallier 1991)
Girard (1981) and Cichon & Wainer (1983) showed that the slow-growing hierarchy of functions gα attains the same growth rate as the function fε0 in the Wainer hierarchy when α is the Bachmann–Howard ordinal. Girard (1981) further showed that the slow-growing hierarchy gα attains the same growth rate as fα (in a particular fast-growing hierarchy) when α is the ordinal of the theory ID<ω of arbitrary finite iterations of an inductive definition. (Wainer 1989)
Functions in fast-growing hierarchies
The functions at finite levels (α < ω) of any fast-growing hierarchy coincide with those of the Grzegorczyk hierarchy: (using hyperoperation)
f0(n) = n + 1 = 2[1]n − 1
f1(n) = f0n(n) = n + n = 2n = 2[2]n
f2(n) = f1n(n) = 2n · n > 2n = 2[3]n for n ≥ 2
fk+1(n) = fkn(n) > (2[k + 1])nn ≥ 2[k + 2]n for n ≥ 2, k < ω.
Beyond the finite levels are the functions of the Wainer hierarchy (ω ≤ α ≤ ε0):
fω(n) = fn(n) > 2[n + 1]n > 2[n](n + 3) − 3 = A(n, n) for n ≥ 4, where A is the Ackermann function (of which fω is a unary version).
fω+1(n) = fωn(n) ≥ fn[n + 2]n(n) for all n > 0, where n[n + 2]n is the nthAckermann number.
fω+1(64) = fω64(64) > Graham's number (= g64 in the sequence defined by g0 = 4, gk+1 = 3[gk + 2]3). This follows by noting fω(n) > 2[n + 1]n > 3[n]3 + 2, and hence fω(gk + 2) > gk+1 + 2.
fε0(n) is the first function in the Wainer hierarchy that dominates the Goodstein function.
Buchholz, W.; Wainer, S.S (1987). "Provably Computable Functions and the Fast Growing Hierarchy". Logic and Combinatorics, edited by S. Simpson, Contemporary Mathematics, Vol. 65, AMS, 179-198.
Gallier, Jean H. (1991), "What's so special about Kruskal's theorem and the ordinal Γ0? A survey of some results in proof theory", Ann. Pure Appl. Logic, 53 (3): 199–260, doi:10.1016/0168-0072(91)90022-E, MR1129778 PDF: [1]. (In particular Section 12, pp. 59–64, "A Glimpse at Hierarchies of Fast and Slow Growing Functions".)
Prömel, H. J.; Thumser, W.; Voigt, B. "Fast growing functions based on Ramsey theorems", Discrete Mathematics, v.95 n.1-3, p. 341-358, December 1991 doi:10.1016/0012-365X(91)90346-4.
Examples
in
numerical
order
Hundred Thousand Ten thousand Hundred thousand Million Billion Trillion Quadrillion Quintillion Sextillion Septillion Octillion Nonillion Decillion Eddington number Googol Shannon number Googolplex Skewes's number Moser's number Graham's number TREE(3) SSCG(3) BH(3) Rayo's number Infinity
Operators
Hyperoperation Tetration Pentation Ackermann function Grzegorczyk hierarchy Fast-growing hierarchy
Related
articles
(alphabetical
order)
Busy beaver Extended real number line Indefinite and fictitious numbers Infinitesimal Largest known prime number List of numbers Long and short scales Number systems Number names Orders of magnitude Power of two Power of three Power of 10 Sagan Unit