Meldrum was awarded an Engineering and Physical Sciences Research Council Fellowship in 2010.[12] Her fellowship considers confined crystallisation in biological systems.[12] She studied the crystallisation of calcium carbonate and calcium phosphate and their behaviour in confined systems.[12] She demonstrated that confinement slows crystallisation, stabilising metaphases.[13] Confined crystallisation can be used to control the polycrystalline structure of crystals. Supported by the Leverhulme Trust, Meldrum showed that even nanoscale confinement can template crystallisation.[14][15] Meldrum looks to use biology to guide crystal growth, demonstrating precipitation with mould and via an amorphous precursor phase.[7][16][17] She also looked how water-soluble block copolymers can influence the crystallisation of barium sulfate and calcium carbonate.[18]
Meldrum's work uses nature as an inspiration for materials design.[19][20] She focuses on biominerals such as bones, teeth and shells.[19] She monitors the amorphous and precursor phases of biological crystal formation.[21] Meldrum uses nanoparticles as additives in crystal growth, using the particle surface chemistry to tune particle occlusion. Amongst several organic additives, Meldrum has incorporated amino acids into calcite.[22] The choice of additive is guided by genetic algorithms, resulting in the production of crystals with desired properties.[23][24] She has evaluated how the surface topography impacts ice crystallisation, showing acute geometries give rise to a confined crystalline, which is followed by the formation of a bulk phase.[25]
The Meldrum group develop microfluidic devices to monitor crystallisation processes.[21] Crystallisation is usually difficult to monitor, as precipitation occurs very rapidly and is severely impacted by impurities. Microfluidic devices offer more control of the crystallisation rate, providing reproducible conditions for crystal growth and the potential to analyse the growth in situ.[21] Meldrum developed a Crystal Hotel to study crystallisation in a variety of environments and equilibrium conditions.[21] Meldrum has developed a range of experimental techniques; including Bragg coherent diffraction imaging, Brewster angle microscopy, liquid-cell Atomic force microscopy (AFM) and Infrared spectroscopy.[26][27]
^Knoll, Wolfgang; Flath, Johannes; Meldrum, Fiona C. (1999). "Chemical deposition of PbS on a series of ω-functionalised self-assembled monolayers". Journal of Materials Chemistry. 9 (3): 711–723. doi:10.1039/A807100D.
^Meldrum, Fiona C.; Flath, Johannes; Knoll, Wolfgang (1997-04-01). "Chemical Deposition of PbS on Self-Assembled Monolayers of 16-Mercaptohexadecanoic Acid". Langmuir. 13 (7): 2033–2049. doi:10.1021/la9608369. ISSN0743-7463.
^Meldrum, Fiona C.; Cölfen, Helmut (2008-11-12). "Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems". Chemical Reviews. 108 (11): 4332–4432. doi:10.1021/cr8002856. ISSN0009-2665. PMID19006397.
^Wang, Yunwei; Zeng, Muling; Meldrum, Fiona C.; Christenson, Hugo K. (2017). "Using Confinement To Study the Crystallization Pathway of Calcium Carbonate". Crystal Growth & Design. 17 (12): 6787–6792. doi:10.1021/acs.cgd.7b01359. ISSN1528-7483.
^Meldrum, Fiona C.; Kulak, Alex N.; Yue, Wenbo (2006). "Growth of single crystals in structured templates". Journal of Materials Chemistry. 16 (4): 408–416. doi:10.1039/B513802G. ISSN1364-5501.
^Loste, Eva; Meldrum, Fiona C. (2001). "Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume". Chemical Communications (10): 901–902. doi:10.1039/b101563j. ISSN1359-7345.