Golgi's methodGolgi's method is a silver staining technique that is used to visualize nervous tissue under light microscopy. The method was discovered by Camillo Golgi, an Italian physician and scientist, who published the first picture made with the technique in 1873.[1] It was initially named the black reaction (la reazione nera) by Golgi, but it became better known as the Golgi stain or later, Golgi method. Golgi staining was used by Spanish neuroanatomist Santiago Ramón y Cajal (1852–1934) to discover a number of novel facts about the organization of the nervous system, inspiring the birth of the neuron doctrine. Ultimately, Ramón y Cajal improved the technique by using a method he termed "double impregnation". Ramón y Cajal's staining technique, still in use, is called Cajal's Stain.[citation needed] MechanismThe cells in nervous tissue are densely packed and little information on their structures and interconnections can be obtained if all the cells are stained. Furthermore, the thin filamentary extensions of neural cells, including the axon and the dendrites of neurons, are too slender and transparent to be seen with normal staining techniques. Golgi's method stains a limited number of cells at random in their entirety. The mechanism by which this happens is still largely unknown.[2] Dendrites, as well as the cell soma, are clearly stained in brown and black and can be followed in their entire length, which allowed neuroanatomists to track connections between neurons and to make visible the complex networking structure of many parts of the brain and spinal cord. Golgi's staining is achieved by impregnating aldehyde fixed nervous tissue with potassium dichromate and silver nitrate. Cells thus stained are filled by microcrystallization of silver chromate. TechniqueAccording to SynapseWeb,[3] this is the recipe for Golgi's staining technique:
This technique has since been refined to substitute the silver precipitate with gold by immersing the sample in gold chloride then oxalic acid, followed by removal of the silver by sodium thiosulphate. This preserves a greater degree of fine structure with the ultrastructural details marked by small particles of gold. [4] QuoteRamón y Cajal said of the Golgi method:
References
External links
|