Share to:

 

Hwasong-14

Hwasong-14
TypeIntercontinental ballistic missile
Place of origin North Korea
Service history
In serviceFirst successful test on 4 July 2017
Used byKorean People's Army Strategic Force
Production history
Produced2017–present
No. builtUnknown
Specifications
Mass33.8 tons
Length19.5 m (63 ft)[1]
Diameter1.7 m (5.5 ft)
Warhead weight500kg[2]

EngineTwo-stage Liquid-fuel rocket[3]
453kN, 46–48 tonne-force.[4]
PropellantUDMH/N204
Operational
range
10,000 km (6,200 mi)[5][6][7][8][9][10]
Flight altitude~3720 km
Launch
platform
Road-mobile TEL[11]
Korean name
Chosŏn'gŭl
화성 14형
Hancha
Revised RomanizationHwaseong 14-hyeong
McCune–ReischauerHwasŏng 14-hyŏng

The Hwasong-14 (Korean《화성-14》형; Hanja火星 14型; lit. Mars Type 14), also known under alternative US designation codename KN-20,[7] is a mobile intercontinental ballistic missile developed by North Korea. It had its maiden flight on 4 July 2017, which coincided with the United States' Independence Day.[12] North Korea is the only known operator of this missile.

Design

The Hwasong-14 is likely a two-staged version of the Hwasong-12 first tested in May 2017.[13] The second stage appears to have increased its range.[13] The first stage engine appears very similar to the Hwasong-12. With a single liquid fuel engine, it has four Vernier thrusters for stability and guidance.[13]

A detailed analysis by the Bulletin of the Atomic Scientists claims that the current variant of the Hwasong-14 may not even be capable of delivering a first-generation nuclear warhead to Anchorage, Alaska. But even if North Korea is now capable of fabricating a relatively light-weight, "miniaturized" atomic bomb that can survive the extreme reentry environments of long-range rocket delivery, it will, with certainty, not be able to deliver such an atomic bomb to the lower 48 states of the United States with the rocket tested on 3 July and 28 July.[14]

A first-generation North Korean nuclear missile warhead is estimated to weigh 500–600 kg (1,100–1,300 lb). Calculations of the range of the Hwasong-14 carrying such a payload vary from 6,000 km (3,700 mi), enough to reach Anchorage, to as much as 8,000 km (5,000 mi), enough to reach Honolulu, Hawaii and Seattle, Washington; the Bulletin of the Atomic Scientists claimed the payload would need to be lighter at 300 kg (660 lb) to be able to reach Seattle. The July 2017 tests were conducted with a 200 kg (440 lb) reentry vehicle, giving the missile its maximum range of 10,400 km (6,500 mi), enough to reach New York City but not Washington D.C., although such a payload is much lighter than North Korea is believed to be capable of weaponizing.[14][15]

The missile is launched from a detachable platform on a concrete pad. This could have several operational ramifications. It may increase the time required to launch the Hwasong-12, and limit the number of launch locations to pre-sited and pre-constructed launch pads.[16]

Engine

Michael Elleman of IISS and the Bulletin of the Atomic Scientists[14] both claim that available evidence clearly indicates that the engine is based on the Soviet RD-250 family of engines for the R-36 missile,[17] and has been modified to operate as the boosting force for the Hwasong-12 and -14. According to his theory an unknown number of these engines were probably acquired through illicit channels operating in Russia and/or Ukraine. North Korea’s need for an alternative to the failing Musudan and the recent appearance of the RD-250 engine along with other evidence, suggests the transfers occurred in 2015–2017.[4] Ukraine rejected this theory claiming it was "most likely provoked by Russian secret services to cover their own crimes."[18] Other US experts have questioned whether the evidence for Elleman's theory is strong enough to back up his claims.[19] Engine maker Yuzhnoye Design Office denied that the engines were supplied to North Korea by Ukraine.[20]

In August 2017 the State Space Agency of Ukraine claimed that the rocket engine used during 28 July 2017 North Korea's missile test was RD-250 made at a Ukrainian factory, but solely for use in Tsyklon space rockets supplied to Russia. The space agency chief said that according to Ukrainian information, “Russia today has between 7 and 20” of the Tsyklon rockets...They have these engines, they have the documentation. They can supply these engines from the finished rockets to whoever they want.”[21] The agency also claimed that a total of 223 Tsyklon-2 and Tsyklon-3 rockets were supplied to Russia.[22] Furthermore, he stated that North Korea cannot produce the fuel for the RD-250 (N2O4 and UDMH), and that it must have been produced either in China or in Ukraine.[21]

According to South Korean intelligence, North Korea received 20 to 40 RD-251 engines from Russia in 2016.[23]

Arms expert Jeffrey Lewis claimed that "The second stage of North Korea's Hwasong-14 missile is similar to the upper stages designed for the Iranian space launch vehicles".[24]

List of Hwasong-14 tests

Attempt Date Location Pre-launch announcement / detection Outcome Additional Notes
1 4 July 2017 [25] near Panghyon Airport, 39.872126 N 125.269258 E[26] None Success ICBM variant of Hwasong-12 with second stage added and smaller reentry vehicle was fired on a lofted trajectory with apogee of 2,802 km (1,741 mi), landing 933 km (580 mi) away in the Sea of Japan (East Sea of Korea).
2 28 July 2017 [27] near Mupyong-ni, Chagang Province Detected by US intelligence since 20 July[28] Success Fired on a lofted trajectory with apogee of 3,724.9 km (2,314.5 mi), landing 998 km (620 mi) away in the Sea of Japan (East Sea of Korea) near Hokkaido, with a total flight time of 47 minutes, 12 seconds.

First test flight

Very high angle[8] lofted trajectories of Hwasong-14

The first publicly announced flight test was on 4 July 2017,[i] to coincide with the US Independence Day celebrations. This flight had a claimed range of 933 kilometres (580 miles) eastwards into the Sea of Japan (East Sea of Korea) and reached an altitude of 2,802 kilometres (9,193,000 ft) during a 39-minute flight.[29]

This range was deliberately shortened, to avoid encroaching on other nations' territory, by 'lofting' the missile: firing it on a trajectory that was inefficiently high, rather than optimised for range. This allows the missile's performance to be tested and demonstrated, without requiring a huge test range.[29]

A prediction for the possible range, following an optimum trajectory, has been given at 6,700 kilometres (4,200 miles)[30] or as much as 10,400 kilometres (6,500 miles) not taking into account the Earth’s rotation. If true, then this brings the U.S. states of Alaska and Hawaii within the missile's range.[29]

Second test flight

Preparations for a second test flight were detected by US intelligence as early as 20 July.[28] On 28 July, the missile was fired at 11:41 p.m local time, the first time which a night time launch was carried out.[31][32] The missile was fired at a lofted trajectory with apogee of 3,700 km (2,300 mi), landing 998 km (620 mi) away with a total flight time of approximately 47 minutes. Based on the data from the test flight, if the missile were fired at the optimal efficient trajectory, it is predicted that the maximum effective range would exceed 10,000 km (6,200 mi). If factoring in the rotation of the Earth, which may provide a range boost when travelling eastward, the Hwasong-14’s coverage area would include the US West Coast, Chicago, and possibly even New York,[16] but only with a substantially reduced payload.[33]

See also

References

  1. ^ There is a 12½ hour time difference from North Korean local time to Eastern Daylight Time. The missile was launched at 9am, North Korean local time, on the morning of 4 July. This was 8:30pm Washington time on the evening of 3 July.
  1. ^ "North Korean HS-14 ICBM". www.b14643.de. Retrieved 12 August 2017.
  2. ^ "North Korea's Third ICBM Launch". 38 North. 29 November 2017.
  3. ^ Diplomat, Ankit Panda and Vipin Narang, The. "North Korea's ICBM: A New Missile and a New Era". Retrieved 18 August 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. ^ a b "The secret to North Korea's ICBM success".
  5. ^ "North Korea Appears to Launch Missile with 6,700 km Range". 3 July 2017.
  6. ^ "N. Korea likely to have operational ICBM capable of striking U.S. West Coast next year or two: U.S. expert".
  7. ^ a b Diplomat, Ankit Panda, The. "Why Is Russia Denying That North Korea Launched an ICBM?". thediplomat.com. Retrieved 12 August 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  8. ^ a b "What is True and Not True About North Korea's Hwasong-14 ICBM: A Technical Evaluation". 38 North. 10 July 2017. As was noted at the time, the Hwasong-14 was launched on a very high angle "lofted" trajectory to avoid overflying Japan, ...
  9. ^ "Arms Control Wonk : North Korea's ICBM: Hwasong-14". armscontrolwonk.libsyn.com. Retrieved 12 August 2017.
  10. ^ "North Korean ICBM Appears Able to Reach Major US Cities". ucsusa.org. Retrieved 12 August 2017.
  11. ^ "Hwasong-14 (KN-20)". Missile Threat CSIS. Retrieved 24 August 2017.
  12. ^ "North Korea's Kim Jong Un says ICBM an Independence Day 'gift' to 'American b**tards': KCNA". The Straits Times. 5 July 2017. Retrieved 5 July 2017.
  13. ^ a b c "Hwasong-14". Center for Strategic and International Studies. Retrieved 7 July 2017.
  14. ^ a b c "Course Correction". 11 August 2017. Archived from the original on 12 August 2017. Retrieved 18 August 2017.
  15. ^ North Korea’s Hwasong-14 ICBM: New Data Indicates Shorter Range Than Many Thought. 38 North. 29 November 2018.
  16. ^ a b "Hwasong-14 (KN-20) - Missile Threat". csis.org. Retrieved 12 August 2017.
  17. ^ Diplomat, Ankit Panda, The. "North Korea's New High-Performance Missile Engines Likely Weren't Made in Russia or Ukraine". Retrieved 18 August 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  18. ^ "Ukraine denies North Korean missile components came from state-owned factory". ABC News. 14 August 2017. Retrieved 18 August 2017.
  19. ^ Borger, Julian (15 August 2017). "North Korea attack on Guam could 'quickly escalate into war' – James Mattis". The Guardian. Retrieved 18 August 2017.
  20. ^ "DENIAL OF THE ARTICLE "THE SECRET OF THE NORTH KOREA'S ICBM SUCCESS" BY THE INTERNATIONAL INSTITUTE FOR STRATEGIC STUDIES AND THE ARTICLE "NORTH KOREA'S MISSILE SUCCESS IS LINKED TO UKRAINIAN PLANT, INVESTIGATORS SAY" BY THE NEW YORK TIMES". www.yuzhnoye.com. Archived from the original on 18 August 2017. Retrieved 18 August 2017.
  21. ^ a b "Kiev space chief: Engines used in North Korea rockets made for Russia but China also had fuel tech". 16 August 2017. Archived from the original on 18 August 2017. Retrieved 18 August 2017 – via Japan Times Online.
  22. ^ "Ukraine's space agency: North Korea engine identical to ours". Retrieved 18 August 2017.
  23. ^ Takala, Rudy (4 October 2017). "European banks are key to North Korea's advance in missile technology".
  24. ^ "Could Iran be behind North Korea's nuclear, missile advances?".
  25. ^ "North Korea announces successful ICBM test". NK News. 5 July 2017.
  26. ^ "North Korea's Hwasong-14 Missile Launch Site Identified: The Panghyon Aircraft Factory". 38 North. Johns Hopkins. 6 July 2017. Retrieved 7 July 2017.
  27. ^ "North Korea announces successful ICBM test". NK News. 28 July 2017.
  28. ^ a b "US intelligence shows North Korean preparations for a possible missile test". 20 July 2017.
  29. ^ a b c John Schilling (5 July 2017). "North Korea Finally Tests an ICBM". 38 North.
  30. ^ David Wright (3 July 2017). "North Korea Appears to Launch Missile with 6,700 km Range". Union of Concerned Scientists.
  31. ^ "Pentagon Spokesman Comments on North Korean Missile Launch". Department of Defense. 28 July 2017.
  32. ^ "Why North Korea's Night Missile Launch Was So Unusual". 28 July 2017.
  33. ^ "What Next for North Korea's ICBM?". 38 North. 1 August 2017. Retrieved 12 August 2017.
Kembali kehalaman sebelumnya