Bloch studied physics at the University of Bonn in 1995, followed by a one-year research visit to Stanford University.[4] He obtained his PhD in 2000 working under Theodor W. Hänsch at the Ludwig-Maximilian's University in Munich.[4] The thesis title was Atomlaser und Phasenkohärenz atomarer Bose-Einstein-Kondensate.[5] As a junior group leader, he continued in Munich and started his work on ultracold quantum gases in optical lattices. In 2003, he moved to a full professor position in experimental physics at the University of Mainz, where he stayed until 2009.[6]
Bloch's work focuses on the investigation of quantum many-body system using ultracold atoms[9] stored in optical lattice potentials. Among other things, he is known for the realization of a quantum phase transition from a superfluid to a Mott insulator,[10] in which ultracold atoms were brought into the regime of strong correlations for the first time, thereby allowing one to mimic the behaviour strongly correlated materials. The experimental ideas were based on a theoretical proposal by Peter Zoller and Ignacio Cirac. His other works includes the observation of a Tonks–Girardeau gas[11] of strongly interacting bosons in one dimensions, the detection of collapses and revivals[12] of the wavefunction of a Bose–Einstein condensate because of interactions, and the use of quantum noise correlations to observe Hanbury-Brown and Twiss bunching[13] and antibunching[14] for bosonic and fermionic atoms (simultaneously with the group of Alain Aspect). More recently, his research team was able to realize single-atom resolved imaging[15] and addressing[16] of ultracold atoms held in an optical lattice. Much of his related work was carried out in the group of Markus Greiner.
Awards
In 2005 he was presented with the International Commission of Optics Prize. In 2011, he received the EPS Prize for Fundamental Aspects of Quantum Electronics and Optics[17] of the European Physical Society.
^Greiner, Markus; Mandel, Olaf; Esslinger, Tilman; Hänsch, Theodor W.; Bloch, Immanuel (2002). "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms". Nature. 415 (6867). Springer Science and Business Media LLC: 39–44. Bibcode:2002Natur.415...39G. doi:10.1038/415039a. ISSN0028-0836. PMID11780110. S2CID4411344.
^Paredes, Belén; Widera, Artur; Murg, Valentin; Mandel, Olaf; Fölling, Simon; Cirac, Ignacio; Shlyapnikov, Gora V.; Hänsch, Theodor W.; Bloch, Immanuel (2004). "Tonks–Girardeau gas of ultracold atoms in an optical lattice". Nature. 429 (6989). Springer Science and Business Media LLC: 277–281. Bibcode:2004Natur.429..277P. doi:10.1038/nature02530. ISSN0028-0836. PMID15152247. S2CID4423003.
^S. Fölling, F. Gerbier, A. Widera, O. Mandel, T. Gericke & I. Bloch, Spatial quantum noise interferometry in expanding ultracold atom clouds, Nature 434, 481 (2005)