List of integrals of inverse trigonometric functions
The following is a list of indefinite integrals (antiderivatives ) of expressions involving the inverse trigonometric functions . For a complete list of integral formulas, see lists of integrals .
The inverse trigonometric functions are also known as the "arc functions".
C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin−1 , asin , or, as is used on this page, arcsin .
For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions .
∫
arcsin
(
x
)
d
x
=
x
arcsin
(
x
)
+
1
−
x
2
+
C
{\displaystyle \int \arcsin(x)\,dx=x\arcsin(x)+{\sqrt {1-x^{2}}}+C}
∫
arcsin
(
a
x
)
d
x
=
x
arcsin
(
a
x
)
+
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arcsin(ax)\,dx=x\arcsin(ax)+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
∫
x
arcsin
(
a
x
)
d
x
=
x
2
arcsin
(
a
x
)
2
−
arcsin
(
a
x
)
4
a
2
+
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arcsin(ax)\,dx={\frac {x^{2}\arcsin(ax)}{2}}-{\frac {\arcsin(ax)}{4\,a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
∫
x
2
arcsin
(
a
x
)
d
x
=
x
3
arcsin
(
a
x
)
3
+
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arcsin(ax)\,dx={\frac {x^{3}\arcsin(ax)}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arcsin
(
a
x
)
d
x
=
x
m
+
1
arcsin
(
a
x
)
m
+
1
−
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arcsin(ax)\,dx={\frac {x^{m+1}\arcsin(ax)}{m+1}}\,-\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\,,\quad (m\neq -1)}
∫
arcsin
(
a
x
)
2
d
x
=
−
2
x
+
x
arcsin
(
a
x
)
2
+
2
1
−
a
2
x
2
arcsin
(
a
x
)
a
+
C
{\displaystyle \int \arcsin(ax)^{2}\,dx=-2x+x\arcsin(ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)}{a}}+C}
∫
arcsin
(
a
x
)
n
d
x
=
x
arcsin
(
a
x
)
n
+
n
1
−
a
2
x
2
arcsin
(
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
arcsin
(
a
x
)
n
−
2
d
x
{\displaystyle \int \arcsin(ax)^{n}\,dx=x\arcsin(ax)^{n}\,+\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)^{n-1}}{a}}\,-\,n\,(n-1)\int \arcsin(ax)^{n-2}\,dx}
∫
arcsin
(
a
x
)
n
d
x
=
x
arcsin
(
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
+
1
−
a
2
x
2
arcsin
(
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
arcsin
(
a
x
)
n
+
2
d
x
,
(
n
≠
−
1
,
−
2
)
{\displaystyle \int \arcsin(ax)^{n}\,dx={\frac {x\arcsin(ax)^{n+2}}{(n+1)\,(n+2)}}\,+\,{\frac {{\sqrt {1-a^{2}x^{2}}}\arcsin(ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arcsin(ax)^{n+2}\,dx\,,\quad (n\neq -1,-2)}
∫
arccos
(
x
)
d
x
=
x
arccos
(
x
)
−
1
−
x
2
+
C
{\displaystyle \int \arccos(x)\,dx=x\arccos(x)-{\sqrt {1-x^{2}}}+C}
∫
arccos
(
a
x
)
d
x
=
x
arccos
(
a
x
)
−
1
−
a
2
x
2
a
+
C
{\displaystyle \int \arccos(ax)\,dx=x\arccos(ax)-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
∫
x
arccos
(
a
x
)
d
x
=
x
2
arccos
(
a
x
)
2
−
arccos
(
a
x
)
4
a
2
−
x
1
−
a
2
x
2
4
a
+
C
{\displaystyle \int x\arccos(ax)\,dx={\frac {x^{2}\arccos(ax)}{2}}-{\frac {\arccos(ax)}{4\,a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4\,a}}+C}
∫
x
2
arccos
(
a
x
)
d
x
=
x
3
arccos
(
a
x
)
3
−
(
a
2
x
2
+
2
)
1
−
a
2
x
2
9
a
3
+
C
{\displaystyle \int x^{2}\arccos(ax)\,dx={\frac {x^{3}\arccos(ax)}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9\,a^{3}}}+C}
∫
x
m
arccos
(
a
x
)
d
x
=
x
m
+
1
arccos
(
a
x
)
m
+
1
+
a
m
+
1
∫
x
m
+
1
1
−
a
2
x
2
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arccos(ax)\,dx={\frac {x^{m+1}\arccos(ax)}{m+1}}\,+\,{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}}\,dx\,,\quad (m\neq -1)}
∫
arccos
(
a
x
)
2
d
x
=
−
2
x
+
x
arccos
(
a
x
)
2
−
2
1
−
a
2
x
2
arccos
(
a
x
)
a
+
C
{\displaystyle \int \arccos(ax)^{2}\,dx=-2x+x\arccos(ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos(ax)}{a}}+C}
∫
arccos
(
a
x
)
n
d
x
=
x
arccos
(
a
x
)
n
−
n
1
−
a
2
x
2
arccos
(
a
x
)
n
−
1
a
−
n
(
n
−
1
)
∫
arccos
(
a
x
)
n
−
2
d
x
{\displaystyle \int \arccos(ax)^{n}\,dx=x\arccos(ax)^{n}\,-\,{\frac {n{\sqrt {1-a^{2}x^{2}}}\arccos(ax)^{n-1}}{a}}\,-\,n\,(n-1)\int \arccos(ax)^{n-2}\,dx}
∫
arccos
(
a
x
)
n
d
x
=
x
arccos
(
a
x
)
n
+
2
(
n
+
1
)
(
n
+
2
)
−
1
−
a
2
x
2
arccos
(
a
x
)
n
+
1
a
(
n
+
1
)
−
1
(
n
+
1
)
(
n
+
2
)
∫
arccos
(
a
x
)
n
+
2
d
x
,
(
n
≠
−
1
,
−
2
)
{\displaystyle \int \arccos(ax)^{n}\,dx={\frac {x\arccos(ax)^{n+2}}{(n+1)\,(n+2)}}\,-\,{\frac {{\sqrt {1-a^{2}x^{2}}}\arccos(ax)^{n+1}}{a\,(n+1)}}\,-\,{\frac {1}{(n+1)\,(n+2)}}\int \arccos(ax)^{n+2}\,dx\,,\quad (n\neq -1,-2)}
∫
arctan
(
x
)
d
x
=
x
arctan
(
x
)
−
ln
(
x
2
+
1
)
2
+
C
{\displaystyle \int \arctan(x)\,dx=x\arctan(x)-{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
∫
arctan
(
a
x
)
d
x
=
x
arctan
(
a
x
)
−
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \arctan(ax)\,dx=x\arctan(ax)-{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}
∫
x
arctan
(
a
x
)
d
x
=
x
2
arctan
(
a
x
)
2
+
arctan
(
a
x
)
2
a
2
−
x
2
a
+
C
{\displaystyle \int x\arctan(ax)\,dx={\frac {x^{2}\arctan(ax)}{2}}+{\frac {\arctan(ax)}{2\,a^{2}}}-{\frac {x}{2\,a}}+C}
∫
x
2
arctan
(
a
x
)
d
x
=
x
3
arctan
(
a
x
)
3
+
ln
(
a
2
x
2
+
1
)
6
a
3
−
x
2
6
a
+
C
{\displaystyle \int x^{2}\arctan(ax)\,dx={\frac {x^{3}\arctan(ax)}{3}}+{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}-{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arctan
(
a
x
)
d
x
=
x
m
+
1
arctan
(
a
x
)
m
+
1
−
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\arctan(ax)\,dx={\frac {x^{m+1}\arctan(ax)}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\,,\quad (m\neq -1)}
∫
arccot
(
x
)
d
x
=
x
arccot
(
x
)
+
ln
(
x
2
+
1
)
2
+
C
{\displaystyle \int \operatorname {arccot}(x)\,dx=x\operatorname {arccot}(x)+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
∫
arccot
(
a
x
)
d
x
=
x
arccot
(
a
x
)
+
ln
(
a
2
x
2
+
1
)
2
a
+
C
{\displaystyle \int \operatorname {arccot}(ax)\,dx=x\operatorname {arccot}(ax)+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2\,a}}+C}
∫
x
arccot
(
a
x
)
d
x
=
x
2
arccot
(
a
x
)
2
+
arccot
(
a
x
)
2
a
2
+
x
2
a
+
C
{\displaystyle \int x\operatorname {arccot}(ax)\,dx={\frac {x^{2}\operatorname {arccot}(ax)}{2}}+{\frac {\operatorname {arccot}(ax)}{2\,a^{2}}}+{\frac {x}{2\,a}}+C}
∫
x
2
arccot
(
a
x
)
d
x
=
x
3
arccot
(
a
x
)
3
−
ln
(
a
2
x
2
+
1
)
6
a
3
+
x
2
6
a
+
C
{\displaystyle \int x^{2}\operatorname {arccot}(ax)\,dx={\frac {x^{3}\operatorname {arccot}(ax)}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6\,a^{3}}}+{\frac {x^{2}}{6\,a}}+C}
∫
x
m
arccot
(
a
x
)
d
x
=
x
m
+
1
arccot
(
a
x
)
m
+
1
+
a
m
+
1
∫
x
m
+
1
a
2
x
2
+
1
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccot}(ax)\,dx={\frac {x^{m+1}\operatorname {arccot}(ax)}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}}\,dx\,,\quad (m\neq -1)}
∫
arcsec
(
x
)
d
x
=
x
arcsec
(
x
)
−
ln
(
|
x
|
+
x
2
−
1
)
+
C
=
x
arcsec
(
x
)
−
arcosh
|
x
|
+
C
{\displaystyle \int \operatorname {arcsec}(x)\,dx=x\operatorname {arcsec}(x)\,-\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arcsec}(x)-\operatorname {arcosh} |x|+C}
∫
arcsec
(
a
x
)
d
x
=
x
arcsec
(
a
x
)
−
1
a
arcosh
|
a
x
|
+
C
{\displaystyle \int \operatorname {arcsec}(ax)\,dx=x\operatorname {arcsec}(ax)-{\frac {1}{a}}\,\operatorname {arcosh} |ax|+C}
∫
x
arcsec
(
a
x
)
d
x
=
x
2
arcsec
(
a
x
)
2
−
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arcsec}(ax)\,dx={\frac {x^{2}\operatorname {arcsec}(ax)}{2}}-{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
2
arcsec
(
a
x
)
d
x
=
x
3
arcsec
(
a
x
)
3
−
arcosh
|
a
x
|
6
a
3
−
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arcsec}(ax)\,dx={\frac {x^{3}\operatorname {arcsec}(ax)}{3}}\,-\,{\frac {\operatorname {arcosh} |ax|}{6\,a^{3}}}\,-\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
∫
x
m
arcsec
(
a
x
)
d
x
=
x
m
+
1
arcsec
(
a
x
)
m
+
1
−
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arcsec}(ax)\,dx={\frac {x^{m+1}\operatorname {arcsec}(ax)}{m+1}}\,-\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\,,\quad (m\neq -1)}
∫
arccsc
(
x
)
d
x
=
x
arccsc
(
x
)
+
ln
(
|
x
|
+
x
2
−
1
)
+
C
=
x
arccsc
(
x
)
+
arcosh
|
x
|
+
C
{\displaystyle \int \operatorname {arccsc}(x)\,dx=x\operatorname {arccsc}(x)\,+\,\ln \left(\left|x\right|+{\sqrt {x^{2}-1}}\right)\,+\,C=x\operatorname {arccsc}(x)\,+\,\operatorname {arcosh} |x|\,+\,C}
∫
arccsc
(
a
x
)
d
x
=
x
arccsc
(
a
x
)
+
1
a
artanh
1
−
1
a
2
x
2
+
C
{\displaystyle \int \operatorname {arccsc}(ax)\,dx=x\operatorname {arccsc}(ax)+{\frac {1}{a}}\,\operatorname {artanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
arccsc
(
a
x
)
d
x
=
x
2
arccsc
(
a
x
)
2
+
x
2
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x\operatorname {arccsc}(ax)\,dx={\frac {x^{2}\operatorname {arccsc}(ax)}{2}}+{\frac {x}{2\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
∫
x
2
arccsc
(
a
x
)
d
x
=
x
3
arccsc
(
a
x
)
3
+
1
6
a
3
artanh
1
−
1
a
2
x
2
+
x
2
6
a
1
−
1
a
2
x
2
+
C
{\displaystyle \int x^{2}\operatorname {arccsc}(ax)\,dx={\frac {x^{3}\operatorname {arccsc}(ax)}{3}}\,+\,{\frac {1}{6\,a^{3}}}\,\operatorname {artanh} \,{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,{\frac {x^{2}}{6\,a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}\,+\,C}
∫
x
m
arccsc
(
a
x
)
d
x
=
x
m
+
1
arccsc
(
a
x
)
m
+
1
+
1
a
(
m
+
1
)
∫
x
m
−
1
1
−
1
a
2
x
2
d
x
,
(
m
≠
−
1
)
{\displaystyle \int x^{m}\operatorname {arccsc}(ax)\,dx={\frac {x^{m+1}\operatorname {arccsc}(ax)}{m+1}}\,+\,{\frac {1}{a\,(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}}\,dx\,,\quad (m\neq -1)}
See also
References