Symptom progression for 2-6 weeks following cessation of vitamin B6, followed by gradual improvement.[14][4][15][16]
Megavitamin-B6 syndrome, also known as hypervitaminosis B6, vitamin B6 toxicity, and vitamin B6 excess,[a] is a medical condition characterized by adverse effects resulting from excessive intake of vitamin B6.[1][2][22] Primarily affecting the nervous system, this syndrome manifests through symptoms such as peripheral sensory neuropathy, characterized by numbness, tingling, and burning sensations in the limbs. The condition is usually triggered by chronic dietary supplementation of vitamin B6 but can also result from acute over-dosages, whether orally or parenterally.[4][5][6]
The syndrome is notable not only for its impact on peripheral nerve function but also because of its generally, but not always, reversible nature upon cessation of vitamin B6 intake. Usually, but not always, cases resolve within six months after stopping the vitamin B6 supplementation, although some symptoms can intensify briefly after cessation—a phenomenon known as "coasting." Diagnosis typically involves serum tests to measure elevated levels of vitamin B6, along with nerve conduction studies and other neurodiagnostic evaluations.[4][14][15][16]
This condition underscores the importance of moderation in the use of dietary supplements, highlighting that even substances generally safe at recommended dosages can lead to serious health issues if taken excessively.[23] The United States Institute of Medicine set a safe adult upper limit (UL) at 100 mg/day in 1998[24] and has not revised that downward despite several other national agency setting lower ULs, the most recent being the European Food Safety Authority revising its adult UL to 12 mg/day in 2023[25] (see table).
Symptom severity appears to be dose-dependent (higher doses cause more severe symptoms)[24] and the duration of supplementation with vitamin B6 before the onset of systems appears to be inversely proportional to the amount taken daily (the smaller the daily dosage, the longer it will take for symptoms to develop).[15][4][10][12][7] It is also possible that some individuals are more susceptible to the toxic effects of vitamin B6 than others.[4] Megavitamin-B6 syndrome has been reported in doses as low as 24 mg/day.[34]
Symptoms may also be dependent on the form of vitamin B6 taken in supplements.[27][35] It has been proposed that vitamin B6 in supplements should be in pyridoxal or pyridoxal phosphate form rather than pyridoxine as these are thought to reduce the likelihood of toxicity.[27][36] A tissue culture study, however, showed that all B6vitamers that could be converted into active coenzymes (pyridoxal, pyridoxine and pyridoxamine) were neurotoxic at similar concentrations.[18][37] It has been shown, in vivo, that supplementing with pyridoxal or pyridoxal phosphate increases pyridoxine concentrations in humans, meaning there are metabolic pathways from each vitamer of B6 to the all other forms.[38][39] Consuming high amounts of vitamin B6 from food has not been reported to cause adverse effects.[24][30][40]
Early diagnosis and cessation of vitamin B6 supplementation can reduce the morbidity of the syndrome.[24][12]
Cause
While vitamin B6 is water-soluble, it accumulates in the body. The half-life vitamin B6 is measured at around two to four weeks,[40][41] it is stored in muscle, plasma, the liver, red blood cells and bound to proteins in tissues.[40][42][43]
Potential mechanisms
The common supplemental form of vitamin B6, pyridoxine, is similar to pyridine, which can be neurotoxic. Pyridoxine has limited transport across the blood–brain barrier, explaining why the central nervous system is spared. Cell bodies of motor fibers are located within the spinal cord, which is also restricted by the blood-brain barrier, explaining why motor impairment is rare. However, the dorsal root ganglia are located outside the blood-brain barrier, making them more susceptible.[23]
Pyridoxine is converted to pyridoxal phosphate via two enzymes, pyridoxal kinase and pyridoxine 5′-phosphate oxidase. High levels of pyridoxine can inhibit these enzymes. As pyridoxal phosphate is the active form of vitamin B6, this saturation of pyridoxine could mimic a deficiency of vitamin B6.[23][27]
Tolerable upper limits
Several government agencies have reviewed the data on vitamin B6 supplementation and produced consumption upper limits with the desired goal of preventing sensory neuropathy from excessive amounts. Each agency developed its own criteria for usable studies concerning tolerable upper limits, and as such, the recommendations vary by agency. Between agencies, current tolerable upper limit guidelines vary from 10 mg per day to 100 mg per day.[40]
Daily vitamin B6 tolerable upper limits for adults as established by the agency
Reviews of vitamin B6 related neuropathy cautioned that supplementation at doses greater than 50 mg per day for extended periods may be harmful and should be discouraged.[49][50] In 2008, the Australian Complementary Medicines Evaluation Committee recommended warning statements appear on products containing daily doses of 50 mg or more vitamin B6 to avoid toxicity.[51]
The relationship between the amount of vitamin B6 consumed and the serum levels of those who consume it varies between individuals.[52] Some people may have high serum concentrations without neuropathy symptoms.[13][53][54] It is not known if inhalation of vitamin B6 while, for example, working with animal feed containing vitamin B6 is safe.[55]
Outside of rare medical conditions, placebo-controlled studies have generally failed to show benefits of high doses of vitamin B6.[29] Reviews of supplementing with vitamin B6 have not found it to be effective at reducing swelling, reducing stress, producing energy, preventing neurotoxicity, or treating asthma.[23]
Other than with extremely high doses of vitamin B6, neurologic dysfunction improves following cessation of vitamin B6 supplementation and usually, but not always, resolves within six months.[3][4] In cases of acute high doses, for example in people receiving daily doses of 2 grams of vitamin B6 per kilogram of body weight, symptoms may be irreversible and may additionally cause pseudoathetosis.[3][15][19][16][6][8]
In the immediate 2–6 weeks following discontinuation of vitamin B6, patients may experience a symptom progression before gradual improvement begins. This is known as coasting and is encountered in other toxic neuropathies.[14][4][15][16] A vitamin B6substance dependency may exist in daily dosages of 200 mg or more, making a drug withdrawal effect possible when discontinued.[23]
^While megavitamin-B6 syndrome, hypervitaminosis B6, vitamin B6 toxicity and vitamin B6 excess are officially recognized, megavitamin-B6 syndrome is the ICD-10 name. Before the adoption of a recognized standard, ad-hoc terms for this appear in literature, often vitamin B6 and its most common supplemental vitamer, pyridoxine, are used interchangeably. Some other terms include vitamin B6 overdose,[17] pyridoxine abuse,[18][19] pyridoxine megavitamosis,[12] pyridoxine poisoning,[20] and pyridoxine neuropathy.[21]
^The terms sensory ganglionopathy and sensory neuronopathy are interchangeable.[61]
References
^ abBell, Daniel J. "Vitamin B6 excess". Radiopaedia. Archived from the original on 2019-10-24. Retrieved 2019-12-01. Vitamin B6 excess (hypervitaminosis B6) is caused by excessive consumption of supplemental pyridoxine, which is used as a therapeutic agent for several conditions.
^ abSilva, C D; D'Cruz, D P (2006). "Pyridoxine toxicity courtesy of your local health food store". Annals of the Rheumatic Diseases. 65 (12): 1666–1667. doi:10.1136/ard.2006.054213. ISSN0003-4967. PMC1798481. PMID17105856. Pyridoxine toxicity is a recognised cause of sensory neuropathy. Schaumburg et al described sensory neuropathy after pyridoxine misuse in 1983. It can occur with chronic use of pyridoxine supplementation over several years, and also with acute over-dosage with parenteral pyridoxine.
^Mikalunas, Vida; Fitzgerald, Kathleen; Rubin, Halina; McCarthy, Roberta; Craig, Robert M. (2001). "Abnormal Vitamin Levels in Patients Receiving Home Total Parenteral Nutrition". Journal of Clinical Gastroenterology. 33 (5): 393–396. doi:10.1097/00004836-200111000-00010. ISSN0192-0790. PMID11606856. S2CID12384721.
^ abcdeDonofrio, Peter D. (2005). "Evaluating the Patient With Peripheral Neuropathy"(PDF). Numbness, Tingling, Pain, and Weakness: A Basic Course in Electrodiagnostic Medicine. Monterey, California: AANEM 52nd Annual Scientific Meeting. Archived from the original(PDF) on 2022-03-31. Retrieved 2019-11-16.
^ abcLacerna, Rhodora A.; Chien, Chloe; Yeh, Shing-Shing (2003). "Paresthesias Developing in an Elderly Patient after Chronic Usage of Nitrofurantoin and Vitamin B6". Journal of the American Geriatrics Society. 51 (12): 1822–1823. doi:10.1046/j.1532-5415.2003.51572_8.x. PMID14687374. S2CID26337220.
^Schaeppi, U.; Krinke, G. (1982). "Pyridoxine neuropathy: Correlation of functional tests and neuropathology in beagle dogs treated with large doses of vitamin B6". Agents and Actions. 12 (4): 575–582. doi:10.1007/BF01965944. ISSN0065-4299. PMID7180742. S2CID30742144.
^ abcdCallizot, Noëlle; Poindron, Philippe (2008). "Pyridoxine-Induced Peripheral Neuropathy". New Animal Models of Human Neurological Diseases. Biovalley Monographs. pp. 66–80. doi:10.1159/000117724. ISBN978-3-8055-8405-0. ....a specific large-fibre neuropathy (with severe loss of proprioceptive function) is encountered clinically after vitamin B6 (pyridoxine).... All subjects showed paraesthesia and numbness as well as ataxia. The clinical examination showed a large sensory deficit with Achilles' reflex loss, associated with Romberg's signs (loss of proprioceptive control in which increased unsteadiness occurs when standing with the eyes closed compared with standing with the eyes open). The electromyographic examination showed a large sensory wave amplitude decrease but no change in the motor conduction.... small fibres were also involved as shown by the decreased SNCV and the altered thermosensitivity detected in the hot plate test. The same signs are observed in humans suffering from pyridoxine-induced neuropathy.
^ abInstitute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline (1998). "Vitamin B6". Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US). Archived from the original on 2021-02-27. Retrieved 2019-12-02.{{cite book}}: CS1 maint: multiple names: authors list (link)
^De Kruijk, J. R.; Notermans, N. C. (2005). "Sensory disturbances caused by multivitamin preparations". Nederlands Tijdschrift voor Geneeskunde. 149 (46): 2541–4. PMID16320661.
^Levine, Seymour; Saltzman, Arthur (2004). "Pyridoxine (vitamin B6) neurotoxicity: enhancement by protein-deficient diet". Journal of Applied Toxicology. 24 (6): 497–500. doi:10.1002/jat.1007. ISSN0260-437X. PMID15558839. S2CID8280774.
^Vrolijk, M. F.; Opperhuizen, A.; Jansen EHJM; Hageman, G. J.; Bast, A.; Haenen GRMM (2017). "The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function". Toxicology in Vitro. 44: 206–212. Bibcode:2017ToxVi..44..206V. doi:10.1016/j.tiv.2017.07.009. PMID28716455.
^Windebank, Anthony J. (1985). "Neurotoxicity of pyridoxine analogs is related to coenzyme structure". Neurochemical Pathology. 3 (3): 159–167. doi:10.1007/BF02834268. ISSN0734-600X. PMID4094726.
^Reeds, Karen (2019-03-04). Ann Ehrenberger, Kristen; Haushofer, Lisa (eds.). "Vitamin B Complexities". H-Nutrition. Archived from the original on 2021-05-12. Retrieved 2019-11-16.
^"Vitamin B6". Nutrient Reference Values for Australia and New Zealand. National Health and Medication Research Council (NHMRC). 2014-03-17. Archived from the original on 2019-03-04. Retrieved 2019-12-02.
^Ghavanini, A. A.; Kimpinski, K. (2014). "Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess". Journal of Clinical Neuromuscular Disease. 16 (1): 25–31. doi:10.1097/CND.0000000000000049. PMID25137514. S2CID205557831.
^ abAdverse Drug Reactions Advisory Committee (ADRAC) and the Office of Medicine Safety Monitoring (OMSM) of the TGA. (2008-08-01). "High-dose vitamin B6 may cause peripheral neuropathy". Australian Adverse Drug Reactions Bulletin. 27 (4). Archived from the original on 2017-09-23.
^Callizot, Noelle; Warter, Jean-Marie; Poindron, Philippe (2001). "Pyridoxine-Induced Neuropathy in Rats: A Sensory Neuropathy That Responds to 4-Methylcatechol". Neurobiology of Disease. 8 (4): 626–635. doi:10.1006/nbdi.2001.0408. ISSN0969-9961. PMID11493027. S2CID30526195.