Monopotassium phosphate can exist in several polymorphs. At room temperature it forms paraelectric crystals with tetragonal symmetry. Upon cooling to −150 °C (−238 °F) it transforms to a ferroelectric phase of orthorhombic symmetry, and the transition temperature shifts up to −50 °C (−58 °F) when hydrogen is replaced by deuterium.[8] Heating to 190 °C (374 °F) changes its structure to monoclinic.[9] When heated further, MKP decomposes, by loss of water, to potassium metaphosphate, KPO 3, at 400 °C (752 °F).
Fertilizer-grade MKP powder contains the equivalent of 52% P 2O 5 and 34% K 2O, and is labeled NPK0-52-34. MKP powder is often used as a nutrient source in the greenhouse trade and in hydroponics.
Also, to be noted is KD*P, potassium dideuterium phosphate, with slightly different properties. Highly deuterated KDP is used in nonlinear frequency conversion of laser light instead of protonated (regular) KDP due to the fact that the replacement of protons with deuterons in the crystal shifts the third overtone of the strong OH molecular stretch to longer wavelengths, moving it mostly out of the range of the fundamental line at approximately 1064 nm of neodymium-based lasers. Regular KDP has absorbances at this wavelength of approximately 4.7–6.3% per cm of thickness while highly deuterated KDP has absorbances of typically less than 0.8% per cm.
^Mathews, Christopher K., K. E. Van Holde, Ean R. Appling, and Spencer J. Anthony-Cahill. Biochemistry. Redwood City, CA: Benjamin/Cummings Pub., 1990. Print.
^ abOno, Yasuhiro; Hikita, Tomoyuki; Ikeda, Takuro (1987). "Phase Transitions in Mixed Crystal System K1−x(NH4)xH2PO4". Journal of the Physical Society of Japan. 56 (2): 577. Bibcode:1987JPSJ...56..577O. doi:10.1143/JPSJ.56.577.
^ abItoh, Kazuyuki; Matsubayashi, Tetsuo; Nakamura, Eiji; Motegi, Hiroshi (1975). "X-Ray Study of High-Temperature Phase Transitions in KH2PO4". Journal of the Physical Society of Japan. 39 (3): 843. Bibcode:1975JPSJ...39..843I. doi:10.1143/JPSJ.39.843.