The Solfatara crater was accessible on foot until 2017 and contains many steam-emitting fumaroles and over 150 pools, at the last count, of boiling mud. Several subsidiary cones and tuff craters, one filled by Lake Avernus, lie within the caldera.
Geochemistry
The magma underlying the Phlegraean Fields produces lavas of varying composition but generally rich in potassium. Trachyte is the most common eruptive product, unusually alkali-rich in some cases. Peralkaline phonolitic trachyte and latite have also been produced, and there is rare trachybasalt.[8]
Geological phases
Three geological phases or periods are recognised and distinguished.[9]
First Phlegraean Period. It is thought that the eruption of the Archiflegreo volcano occurred about 39,280 ± 110 years (older estimate ~37,000 years) ago, erupting about 200 km3 (48 cu mi) of magma (500 km3 (120 cu mi) bulk volume)[10] to produce the Campanian Ignimbrite eruption.[11] Its Volcanic Explosivity Index (VEI) was 7 and it left a large part of eastern Europe covered in ash.[12]
"The dating of the Campanian Ignimbrite Eruption (CI) to ~37,000 calendar years B.P. draws attention to the coincidence of this volcanic catastrophe and the suite of coeval, Late Pleistocene biocultural changes that occurred within and outside the Mediterranean region. These included the Middle to Upper Paleolithic cultural transition and the replacement of Neanderthal populations by anatomically modern Homo sapiens, a subject of sustained debate.[13] No less than 150 km3 (36 cu mi) of magma were extruded in this eruption (the CI eruption), traces of which can be detected in Greenland ice cores. As widespread discontinuities in archaeological sequences are observed at or after this eruption, a significant interference with ongoing human processes in Mediterranean Europe is hypothesized."[14]
It is believed that the resulting ecological crisis wiped out both the last Neanderthal and the first Homo Sapiens populations of the early Upper Paleolithic.[15][16] Modern humans then repopulated Europe from the east after the eruption and the ice age that took place from 38,000 to 36,000 BC.[17]
The Phlegrean area is characterised by banks of piperno and pipernoid grey tuff at Camaldoli hill, as in the northern and western ridge of Mount Cumae; other referable deep products are those found at Monte di Procida, recognizable in the cliffs of its coast.
Second Phlegraean Period, between 35,000 and 10,500 years ago.[9] This is characterized by the Neapolitan yellow tuff that is the remains of an immense underwater volcano, with a diameter of c. 15 kilometres (9.3 mi);[5] Pozzuoli is at its centre. Approximately 12,000 years ago the last major eruption occurred, forming a smaller caldera inside the main caldera, with its centre where the town of Pozzuoli lies today.
Third Phlegraean Period, between 8,000 and 500 years ago.[9] This is characterized by white pozzolana, the material that forms the majority of volcanos in the Fields. Broadly speaking, it can be said there was initial activity to the southwest in the zone of Bacoli and Baiae (10,000–8,000 years ago); intermediate activity in an area centred between Pozzuoli, Montagna Spaccata [Cleft Mountain] and Agnano (8,000–3,900 years ago); and more recent activity towards the west, which formed Lake Avernus and Monte Nuovo (New Mountain) (3,800–500 years ago).
Volcanic deposits indicative of eruption have been dated by argon at 315,000, 205,000, 157,000 and 18,000 years ago.[citation needed]
More recent history
In 1538, an eight-day eruption in the area deposited enough material to create a new hill, Monte Nuovo. It has risen about 2 m (7 ft) from ground level since 1970.
The volcanic island of Ischia suffered three destructive earthquakes in 1828, 1881, and the most destructive one in 1883, with a magnitude of 4.2–5.2 and causing catastrophic shaking assigned XI (Extreme) on the MCS scale. Extreme damage was reported on the island, and over 2,000 residents perished.[18]
A 2009 journal article stated that deformation of the caldera centre near Pozzuoli might presage an eruptive event within decades.[19] In 2012 the International Continental Scientific Drilling Program planned to drill 3.5 kilometres (11,000 feet) below the earth's surface near Pompeii, in order to monitor the massive molten rock chamber below and provide early warning of any eruption. Local scientists were worried that drilling could precipitate an eruption or earthquake; programme scientists said it was no different from industrial drilling in the area. The drilling was halted in 2010, but later resumed. A Reuters article emphasized that the area could produce a "super volcano" that might kill millions.[20]
A study from the Istituto Nazionale di Geofisica e Vulcanologia reported that the volcanic unrest of the Campi Flegrei caldera from January 2012 to June 2013 was characterised by rapid ground uplift of about 11 cm (4 in), with a peak rate of about 3 cm (1 in) per month during December 2012. It added that from 1985 to 2011 the dynamics of ground uplift were mostly linked to the caldera's hydrothermal system, and that this relation broke down in 2012. The driving mechanism of the ground uplift changed to periodical emplacement of magma within a flat sill-shaped magmatic reservoir about 3,000 m (9,843 ft) in depth, 500 m (1,640 ft) south from the port of Pozzuoli.[21]
In December 2016, activity became so high that an eruption was feared.[22] In May 2017 a new study by University College London and the Vesuvius Observatory published in Nature Communications concluded that an eruption might be closer than previously thought. The study found that the geographical unrest since the 1950s has a cumulative effect, causing a build-up of energy in the crust and making the volcano more susceptible to eruption.[23][24][25][26]
On 21 August 2017 there was a magnitude 4 earthquake on the western edge of the Campi Flegrei area.[27] Two people were killed and many more people injured in Casamicciola on the northern coast of the island of Ischia, which is south of the epicentre.[28]
Activity since 2020
The reason for the seismicity and bulging ground is not known as of 2023[update]. According to one model, called in a Scientific American article the shallow magma model, magma is pushing to break through the surface, making an explosive eruption with magma flow likely. In what has been termed the hot fluids model, steam and hot gases generated deeper underground are the cause. In this case activity could stop abruptly, or lead to a phreatic eruption of hot liquids, gases and rock fragments, rather than lava. While very dangerous, it is less so than a magma eruption. An answer to this question would help to estimate how likely this volcano, and other large volcanoes and supervolcanoes, are to erupt, and what warning signs to look out for.[29]
A February 2020 status report indicated that earth uplift around Pozzuoli continued at steady rates, with a maximum average of 0.7 cm per month since July 2017. Gas emissions and fumarole temperatures did not change significantly.[30][31] In May 2024 the ground was reported to be rising by 2 cm per month, with the rate increasing.[32]
On April 26, 2020, a moderate earthquake swarm hit Campi Flegrei caldera, with about 34 earthquakes ranging between magnitude 0 and magnitude 3.1 centred around the port city of Pozzuoli. The strongest quake in the sequence was of magnitude 3.1, the strongest at the time since the last major period of unrest and rapid uplift in 1982-1984. However, no new fumaroles were reported.[33]
Volcanic activity was reported in January 2022 to be increasing.[34] In the year to September 2023 seismic activity had intensified, particularly in the later months. On 27 September 2023, a magnitude 4.2 earthquake—the strongest in 40 years—prompted the preparation of contingency plans to evacuate up to 360,000 people in the area.[35] Despite a further 4.0 quake on 2 October, most volcanologists consider that a major eruption is not expected imminently.[36]
The best-case scenario was deemed to be the activity ending, as happened after much activity on the 1980s. The worst would be an eruption like the one of 1538. A study by Italy's National Institute of Geophysics and Volcanology (INGV) and University College London (UCL) in June 2023 concluded that the volcano was edging towards "breaking point" and in an "extremely dangerous state".[37]Nello Musumeci, Italian minister for civil protection, was to ask Neapolitan local officials for an "acceleration in the drafting of exodus plans in the event of an emergency";[35] he said that evacuation would only be carried out in the event of "extreme necessity".[36] Mass evacuation plans were to be tested at the end of May 2024.[38]
Intense seismic activity continues in 2024.[39][40] On 20 May 2024, seismic activity intensified, with a swarm of 150 earthquakes in a few hours, one of magnitude 4.4 causing fear among the population of Pozzuoli and some cracks and minor damage to buildings. Schools and a prison were evacuated.[32][38]
Geoheritage designation
In respect of its 18th and 19th century role in the development of geoscience, not least volcanology, this locality was included by the International Union of Geological Sciences (IUGS) in its assemblage of 100 'geological heritage sites' around the world in a listing published in October 2022.[41]
Wine
Italian wine, both red and white, under the Campi Flegrei DOC appellation comes from this area. Grapes destined for DOC production must be harvested up to a maximum yield of 12 tonnes/hectare for red grape varieties, and 13 t/ha for white grape varieties. The finished wines need to be fermented to a minimum alcohol level of 11.5% for reds and 10.5% for whites. While most Campi Flegrei wines are blends, varietal wines can be made from individual varieties, provided the variety used comprises at least 90% of the blend and the wine is fermented to at least 12% alcohol for reds and 11% for whites.[42]
Red Campi Flegrei is a blend of 50–70% Piedirosso, 10–30% Aglianico and/or Sciascinoso and up to 10% of other local (both red and white) grape varieties. The whites are composed of 50–70% Falanghina, 10–30% Biancolella and/or Coda di Volpe, with up to 30% of other local white grape varieties.[42]
Cultural importance
Campi Flegrei has had strategic and cultural importance.
The area was the site of quarries for piperno stone, an ignimbrite (welded tuff), a stone that was used to build much of Naples; piperno "is probably the most important building stone of Naples, used over a time-span from at least the Roman age until the beginning of the 20th century."[43][44] Piperno stone was used in the construction of Pompeii, along with other stone including Naples yellow tuff, foamy basalt, and limestone.
Baiae, now partially submerged, was a fashionable coastal resort and was the site of summer villas of Julius Caesar, Nero, and Hadrian (who died there).
At Baiae, now in the comune of Bacoli, the most ancient hot spring complex was built for the richest Romans. It included the largest ancient dome in the world before the construction of the Roman Pantheon.
Astronomical broadcaster and writer Patrick Moore used to cite these Fields as an example of why the impact craters on the Moon must be of volcanic origin, which was thought to be the case until the 1960s.
^Non-scientific media have described the area as a supervolcano[2] but it does not meet the criterion set by vulcanologists: an eruption with a volcanic explosivity index (VEI) of 8,[3] the largest recorded value on the index. This means the volume of deposits for such an eruption is greater than 1,000 cubic kilometers (240 cubic miles).[4] The Neapolitan Yellow Tuff eruption (about 12ka BP) produced "just" 50 cubic kilometers.[5] It is, however, one of relatively few volcanoes large enough to form a caldera.
^Armienti, P.; Barberi, F.; Bizojard, H.; Clocchiatti, R.; Innocenti, F.; Metrich, N.; Rosi, M.; Sbrana, A. (September 1983). "The phlegraean fields: Magma evolution within a shallow chamber". Journal of Volcanology and Geothermal Research. 17 (1–4): 289–311. Bibcode:1983JVGR...17..289A. doi:10.1016/0377-0273(83)90073-2.
^Kathryn E. Fitzsimmons et al., The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution, 2013 https://doi.org/10.1371/journal.pone.0065839
^De Vivo, B.; G. Rolandi; P. B. Gans; A. Calvert; W. A. Bohrson; F. J. Spera; H. E. Belkin (November 2001). "New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)". Mineralogy and Petrology. 73 (1–3): 47–65. Bibcode:2001MinPe..73...47D. doi:10.1007/s007100170010. S2CID129762185.
^Kathryn E. Fitzsimmons et al., The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution, 2013 https://doi.org/10.1371/journal.pone.0065839
^Giaccio, B. et al., High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci Rep 7, 45940 (2017). https://doi.org/10.1038/srep45940
^Bennett, E.A. et al., Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nat Ecol Evol (2023). https://doi.org/10.1038/s41559-023-02211-9
^Calcaterra, Domenico; Cappelletti, Piergiulio; Langella, Alessio; Morra, Vincenzo; Colella, Abner; de Gennaro, Roberto (December 2000). "The building stones of the ancient centre of Naples (Italy): Piperno from Campi Flegrei. A contribution to the knowledge of a long-time-used stone". Journal of Cultural Heritage. 1 (4): 415–427. doi:10.1016/S1296-2074(00)01097-9.
^Liubov Vitaliena Golovanova; Vladimir Borisovich Doronichev; Naomi Elancia Cleghorn; Marianna Alekseevna Koulkova; Tatiana Valentinovna Sapelko; M. Steven Shackley (October 2010). "Volcanoes Wiped out Neanderthals, New Study Suggests"(news release). Current Anthropology. 51 (5): 655–691. doi:10.1086/656185. S2CID144299365. Significance of Ecological Factors in the Middle to Upper Paleolithic Transition