Share to:

 

SLC25A22

SLC25A22
Identifiers
AliasesSLC25A22, EIEE3, GC1, NET44, GC-1, solute carrier family 25 member 22, DEE3
External IDsOMIM: 609302; MGI: 1915517; HomoloGene: 69383; GeneCards: SLC25A22; OMA:SLC25A22 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001191060
NM_001191061
NM_024698

NM_001177576
NM_026646
NM_001360723
NM_001360724

RefSeq (protein)

NP_001177989
NP_001177990
NP_078974

NP_001171047
NP_080922
NP_001347652
NP_001347653

Location (UCSC)Chr 11: 0.79 – 0.8 MbChr 7: 141.01 – 141.02 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Solute carrier family 25 member 22 is a protein that in humans is encoded by the SLC25A22 gene. This gene encodes a mitochondrial glutamate carrier. Mutations in this gene are associated with early infantile epileptic encephalopathy.[5] Expression of this gene is increased in colorectal tumor cells.[6]

Structure

The SLC25A22 gene is located on the p arm of chromosome 11 in position 15.5 and has 9 exons spanning 7,807 base pairs.[7] The gene produces a 34.5 kDa protein composed of 323 amino acids.[8][9][7] The encoded protein is a multi-pass transmembrane protein located in the mitochondrial inner membrane.[10][11]

Function

The protein encoded by SLC25A22 is involved in the transport of glutamate, cotransported with H+, across the inner mitochondrial membrane.[10][11] Both SLC25A22 and SLC25A18 are mitochondrial glutamate/H+ symporters.[7]

Clinical significance

Epileptic encephalopathy

Mutations in the SLC25A22 gene cause early infantile epileptic encephalopathy 3 (EIEE3), a severe form of epilepsy characterized by frequent tonic seizures or spasms beginning in infancy with a specific EEG finding of suppression-burst patterns, characterized by high-voltage bursts alternating with almost flat suppression phases. Epileptic encephalopathy early infantile type 3 is characterized by a very early onset, erratic and fragmentary myoclonus, massive myoclonus, partial motor seizures and late tonic spasms. The prognosis is poor, with no effective treatment, and children with the condition either die within 1 to 2 years after birth or survive in a persistent vegetative state.[10][11]

Migrating partial seizures in infancy, caused by a specific G110R mutation in the SLC25A22 gene, can be inherited.[12]

Although expression of SLC25A22 is high in most tissues, expression is particularly strong in the developing brain, with regions of the brain involved in the genesis and control of myoclonic seizures specifically expressing SLC25A22 during human development.[13][7][12][10][11]

Colorectal cancer

SLC25A22 expression is increased in colorectal tumor tissues compared to matched nontumor colon tissues. Increased expression of the encoded protein was associated with decreased survival times in colorectal cancer patients. Knockdown of this gene in mutant colorectal cells decreased their migration, proliferation, and invasion.[6]

Interactions

The encoded protein interacts with SLC38A1, NDUFAF4, and 43 other proteins.[14]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000177542Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000019082Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Solute carrier family 25 member 22". Retrieved 2016-10-15.Public Domain This article incorporates text from this source, which is in the public domain.
  6. ^ a b Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, et al. (November 2016). "SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate". Gastroenterology. 151 (5): 945–960.e6. doi:10.1053/j.gastro.2016.07.011. PMID 27451147.
  7. ^ a b c d Online Mendelian Inheritance in Man (OMIM): SLC25A22 - 609302
  8. ^ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, et al. (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  9. ^ "SLC25A22 - Mitochondrial glutamate carrier 1". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB).
  10. ^ a b c d "SLC25A22 - Mitochondrial glutamate carrier 1 - Homo sapiens (Human) - SLC25A22 gene & protein". www.uniprot.org. Retrieved 2018-08-24. This article incorporates text available under the CC BY 4.0 license.
  11. ^ a b c d The UniProt Consortium (January 2017). "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158 – D169. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  12. ^ a b Poduri A, Heinzen EL, Chitsazzadeh V, Lasorsa FM, Elhosary PC, LaCoursiere CM, et al. (December 2013). "SLC25A22 is a novel gene for migrating partial seizures in infancy". Annals of Neurology. 74 (6): 873–82. doi:10.1002/ana.23998. PMC 4031329. PMID 24596948.
  13. ^ Molinari F, Raas-Rothschild A, Rio M, Fiermonte G, Encha-Razavi F, Palmieri L, et al. (February 2005). "Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy". American Journal of Human Genetics. 76 (2): 334–9. doi:10.1086/427564. PMC 1196378. PMID 15592994.
  14. ^ "SLC25A22 interactors". IntAct. EMBL-EBI. Retrieved 2018-08-26.

Further reading

  • Palmieri F (2013). "The mitochondrial transporter family SLC25: identification, properties and physiopathology". Molecular Aspects of Medicine. 34 (2–3): 465–84. doi:10.1016/j.mam.2012.05.005. PMID 23266187.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Kembali kehalaman sebelumnya