Share to:

 

Kaidah hasil-bagi

Dalam kalkulus, kaidah hasil bagi adalah cara untuk menemukan turunan sebuah fungsi yang terdiri dari hasil bagi dua fungsi lain yang eksistensi turunannya sudah diketahui.

Bila fungsi yang ingin didiferensiasikan f(x) dapat ditulis sebagai

,

dan h(x)0, maka kaidah hasil bagi menyatakan bahwa turunan g(x)/h(x) dapat dihitung sebagai berikut:

Atau lebih tepatnya, untuk semua x dalam sebuah himpunan terbuka (dalam bilangan riil ini adalah selang terbuka) beranggotakan bilangan a, dengan h(a)0, dan g'(a) serta h'(a) keduanya eksis, maka f'(a) juga eksis:


Bukti

Misalkan dengan , g dan h diferensiabel. Dari definisi turunan kita dapat menuliskan:

Dengan menarik keluar dan menjumlahkan pecahan di pembilang:


Menambahkan suku pada pembilang dan menyusun ulang memberikan

Memfaktorkan dan mengalikan di pembilang menghasilkan:

Dari definisi turunan, limit-limit di pembilang adalah turunan. Jadi kita mendapatkan

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya