December 2001 lunar eclipse
A penumbral lunar eclipse occurred at the Moon’s ascending node of orbit on Sunday, December 30, 2001,[1] with an umbral magnitude of −0.1141. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A penumbral lunar eclipse occurs when part or all of the Moon's near side passes into the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring about 3.7 days before perigee (on January 2, 2002, at 2:10 UTC), the Moon's apparent diameter was larger.[2] VisibilityThe eclipse was completely visible over northeast Asia, the Pacific Ocean, and North America, seen rising over much of Asia and Australia and setting over South America.[3]
Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 2001
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 144
Inex
Triad
Lunar eclipses of 1998–2002This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5] The penumbral lunar eclipses on March 13, 1998 and September 6, 1998 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 26, 2002 and November 20, 2002 occur in the next lunar year eclipse set.
Saros 144This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on July 29, 1749. It contains partial eclipses from March 28, 2146 through June 23, 2290; total eclipses from July 4, 2308 through January 28, 2651; and a second set of partial eclipses from February 8, 2669 through June 8, 2867. The series ends at member 71 as a penumbral eclipse on September 4, 3011. The longest duration of totality will be produced by member 38 at 104 minutes, 53 seconds on September 7, 2416. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Tritos seriesThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two partial solar eclipses of Solar Saros 151.
See alsoReferences
External links
|