Hydrocodone is used to treat moderate to severe pain. In liquid formulations, it is used to treat cough.[10] In one study comparing the potency of hydrocodone to that of oxycodone, it was found that it took 50% more hydrocodone to achieve the same degree of miosis (pupillary contraction).[17] The investigators interpreted this to mean that oxycodone is about 50% more potent than hydrocodone.
However, in a study of emergency department patients with fractures, it was found that an equal amount of either drug provided about the same degree of pain relief, indicating that there is little practical difference between them when used for that purpose.[18] Some references state that the analgesic action of hydrocodone begins in 20–30 minutes and lasts about 4–8 hours.[19] The manufacturer's information says onset of action is about 10–30 minutes and duration is about 4–6 hours.[20] Recommended dosing interval is 4–6 hours. Hydrocodone reaches peak serum levels after 1.3 hours.[21]
Hydrocodone is available in a variety of formulations for oral administration:[22][23][24]
The original oral form of hydrocodone alone, Dicodid, as immediate-release 5- and 10-mg tablets is available for prescription in Continental Europe per national drug control and prescription laws and Title 76 of the Schengen Treaty, but dihydrocodeine has been more widely used for the same indications since the beginning in the early 1920s, with hydrocodone being regulated the same way as morphine in the German Betäubungsmittelgesetz, the similarly named law in Switzerland and the Austrian Suchtmittelgesetz, whereas dihydrocodeine is regulated like codeine. For a number of decades, the liquid hydrocodone products available have been cough medicines.
Hydrocodone plus homatropine (Hycodan) in the form of small tablets for coughing and especially neuropathic moderate pain (the homatropine, an anticholinergic, is useful in both of those cases and is a deterrent to intentional overdose) was more widely used than Dicodid and was labelled as a cough medicine in the United States whilst Vicodin and similar drugs were the choices for analgesia.
Extended-release hydrocodone in a time-release syrup also containing chlorphenamine/chlorpheniramine is a cough medicine called Tussionex in North America. In Europe, similar time-release syrups containing codeine (numerous), dihydrocodeine (Paracodin Retard Hustensaft), nicocodeine (Tusscodin), thebacon, acetyldihydrocodeine, dionine, and nicodicodeine are used instead.
Several cases of progressive bilateral hearing loss unresponsive to steroid therapy have been described as an infrequent adverse reaction to hydrocodone/paracetamol misuse. This adverse effect has been considered by some to be due to the ototoxicity of hydrocodone.[27][28] Other researchers have suggested that paracetamol is the primary agent responsible for the ototoxicity.[29][30]
The U.S. Food and Drug Administration (FDA) assigns the drug to pregnancy category C, meaning that no adequate and well-controlled studies in humans have been conducted. A newborn of a mother taking opioid medications regularly prior to the birth will be physically dependent.[31][32] The baby may also exhibit respiratory depression if the opioid dose was high.[33] An epidemiological study indicated that opioid treatment during early pregnancy results in increased risk of various birth defects.[34]
Symptoms of hydrocodone overdose include narrowed or widened pupils; slow, shallow, or stopped breathing; slowed or stopped heartbeat; cold, clammy, or blue skin; excessive sleepiness; loss of consciousness; seizures; or death.[26]
Hydrocodone can be habit forming, causing physical and psychological dependence. Its abuse liability is similar to morphine and less than oxycodone.[35]
Studies have shown hydrocodone is stronger than codeine but only one-tenth as potent as morphine at binding to receptors and reported to be only 59% as potent as morphine in analgesic properties. However, in tests conducted on rhesus monkeys, the analgesic potency of hydrocodone was actually higher than morphine.[7]Oral hydrocodone has a mean equivalent daily dosage (MEDD) factor of 0.4, meaning that 1 mg of hydrocodone is equivalent to 0.4 mg of intravenous morphine. However, because of morphine's low oral bioavailability, there is a 1:1 correspondence between orally administered morphine and orally administered hydrocodone.[47]
Pharmacokinetics
Absorption
Hydrocodone is only pharmaceutically available as an oral medication.[2] It is well-absorbed, but the oral bioavailability of hydrocodone is only approximately 25%.[4][5] The onset of action of hydrocodone via this route is 10 to 20 minutes, with a peak effect (Tmax) occurring at 30 to 60 minutes,[42] and it has a duration of 4 to 8 hours.[2] The FDA label for immediate-release hydrocodone with acetaminophen does not include any information on the influence of food on its absorption or other pharmacokinetics.[48] Conversely, coadministration with a high-fat meal increases peak concentrations of different formulations of extended-release hydrocodone by 14 to 54%, whereas area-under-the-curve levels are not notably affected.[49][50][51][52]
In the liver, hydrocodone is transformed into several metabolites, including norhydrocodone, hydromorphone, 6α-hydrocodol (dihydrocodeine), and 6β-hydrocodol.[6] 6α- and 6β-hydromorphol are also formed, and the metabolites of hydrocodone are conjugated (via glucuronidation).[53][54] Hydrocodone has a terminal half-life that averages 3.8 hours (range 3.3–4.4 hours).[7][2] The hepatic cytochrome P450 enzyme CYP2D6 converts hydrocodone into hydromorphone, a more potent opioid (5-fold higher binding affinity to the MOR).[6][55] However, extensive and poor cytochrome 450 CYP2D6 metabolizers had similar physiological and subjective responses to hydrocodone, and CYP2D6 inhibitor quinidine did not change the responses of extensive metabolizers, suggesting that inhibition of CYP2D6 metabolism of hydrocodone has no practical importance.[56][57] Ultra-rapid CYP2D6 metabolizers (1–2% of the population) may have an increased response to hydrocodone; however, hydrocodone metabolism in this population has not been studied.[58]
Norhydrocodone, the major metabolite of hydrocodone, is predominantly formed by CYP3A4-catalyzed oxidation.[6] In contrast to hydromorphone, it is described as inactive.[55] However, norhydrocodone is actually a MOR agonist with similar potency to hydrocodone, but has been found to produce only minimal analgesia when administered peripherally to animals (likely due to poor blood–brain barrier and thus central nervous system penetration).[59] Inhibition of CYP3A4 in a child who was, in addition, a poor CYP2D6 metabolizer, resulted in a fatal overdose of hydrocodone.[60] Approximately 40% of hydrocodone metabolism is attributed to non-cytochrome P450-catalyzed reactions.[61]
Hydrocodone concentrations are measured in blood, plasma, and urine to seek evidence of misuse, to confirm diagnoses of poisoning, and to assist in investigations into deaths. Many commercial opiate screening tests react indiscriminately with hydrocodone, other opiates, and their metabolites, but chromatographic techniques can easily distinguish hydrocodone uniquely. Blood and plasma hydrocodone concentrations typically fall into the 5–30 μg/L range among people taking the drug therapeutically, 100–200 μg/L among recreational users, and 100–1,600 μg/L in cases of acute, fatal overdosage. Co-administration of the drug with food or alcohol can very significantly increase the resulting plasma hydrocodone concentrations that are subsequently achieved.[62][63]
Synthesis
Hydrocodone is most commonly synthesized from thebaine, a constituent of opium latex from the dried poppy plant. Once thebaine is obtained, the reaction undergoes hydrogenation using a palladium catalyst.[64]
Structure
There are three important structures in hydrocodone: the amine group, which binds to the tertiary nitrogen binding site in the central nervous system's opioid receptor, the hydroxy group that binds to the anionic binding site, and the phenyl group which binds to the phenolic binding site.[65] This triggers a G protein activation and subsequent release of dopamine.[66]
History
Hydrocodone was first synthesized in Germany in 1920 by Carl Mannich and Helene Löwenheim.[67] It was approved by the Food and Drug Administration on 23 March 1943 for sale in the United States and approved by Health Canada for sale in Canada under the brand name Hycodan.[68][69]
Hydrocodone was first marketed by Knoll as Dicodid, starting in February 1924 in Germany. This name is analogous to other products the company introduced or otherwise marketed: Dilaudid (hydromorphone, 1926), Dinarkon (oxycodone, 1917), Dihydrin (dihydrocodeine, 1911), and Dimorphan (dihydromorphine). Paramorfan is the trade name of dihydromorphine from another manufacturer, as is Paracodin, for dihydrocodeine.[70][71]
Hydrocodone was patented in 1923, while the long-acting formulation was approved for medical use in the United States in 2013.[10][72] It is most commonly prescribed in the United States, which consumed 99% of the worldwide supply as of 2010.[73] In 2018, it was the 402nd most commonly prescribed medication in the United States, with more than 400,000 prescriptions.[74]
Society and culture
Formulations
Several common imprints for hydrocodone are M365, M366, M367.[75]
Most hydrocodone formulations include a second analgesic, such as paracetamol (acetaminophen) or ibuprofen. Examples of hydrocodone combinations include Norco, Vicodin, Vicoprofen and Riboxen.[76]
Legal status in the United States
The US government imposed tougher prescribing rules for hydrocodone in 2014, changing the drug from Schedule III to Schedule II.[77][78][79][80] In 2011, hydrocodone products were involved in around 100,000 abuse-related emergency department visits in the United States, more than double the number in 2004.[81]
^ abcPolsten GR, Wallace MS (21 June 2016). "Analgesic Agents in Rheumatic Disease". In Firestein GS, Budd R, Gabriel SE, McInnes IB, O'Dell JR (eds.). Kelley and Firestein's Textbook of Rheumatology. Elsevier Health Sciences. pp. 1081–. ISBN978-0-323-41494-4. Archived from the original on 12 January 2023. Retrieved 23 September 2016.
^McPherson ML (24 August 2009). "Appendix: Opioid Formulations". Demystifying Opioid Conversion Calculations: A Guide for Effective Dosing. ASHP. pp. 187–188. ISBN978-1-58528-297-5. Archived from the original on 12 January 2023. Retrieved 23 September 2016.
^Skidmore-Roth L (27 June 2013). "Hydrocodone". Mosby's Drug Guide for Nursing Students, with 2014 Update. Elsevier Health Sciences. pp. 524–. ISBN978-0-323-22268-6. Archived from the original on 12 January 2023. Retrieved 23 September 2016.
^Vadivelu N, Schermer E, Kodumudi G, Berger JM (July 2016). "The Clinical Applications of Extended-Release Abuse-Deterrent Opioids". CNS Drugs. 30 (7): 637–646. doi:10.1007/s40263-016-0357-0. PMID27290716. S2CID26878027.
^Friedman RA, House JW, Luxford WM, Gherini S, Mills D (March 2000). "Profound hearing loss associated with hydrocodone/acetaminophen abuse". The American Journal of Otology. 21 (2): 188–191. doi:10.1016/S0196-0709(00)80007-1. PMID10733182.
^Gnanadesigan N, Espinoza RT, Smith RL (June 2005). "The serotonin syndrome". The New England Journal of Medicine. 352 (23): 2454–6, author reply 2454–6. doi:10.1056/NEJM200506093522320. PMID15948273.
^Tiziani AP (1 June 2013). "Opiod Analgesics". Havard's Nursing Guide to Drugs. Elsevier Health Sciences. pp. 933–. ISBN978-0-7295-8162-2. Archived from the original on 11 January 2023. Retrieved 22 June 2018.
^Thompson CM, Wojno H, Greiner E, May EL, Rice KC, Selley DE (February 2004). "Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at mu- and delta-opioid receptors". The Journal of Pharmacology and Experimental Therapeutics. 308 (2): 547–554. doi:10.1124/jpet.103.058602. PMID14600248. S2CID22492018.
^Agar M, Clark K (10 February 2015). "Palliative Medicine". In Talley NJ, Frankum B, Currow D (eds.). Essentials of Internal Medicine (3rd ed.). Elsevier Health Sciences. pp. 491–. ISBN978-0-7295-8081-6.
^Raffa RB, Colucci R, Pergolizzi JV (September 2017). "The effects of food on opioid-induced nausea and vomiting and pharmacological parameters: a systematic review". Postgraduate Medicine. 129 (7): 698–708. doi:10.1080/00325481.2017.1345282. PMID28635354. S2CID46184629.
^Bond M, Rabinovich-Guilatt L, Selim S, Darwish M, Tracewell W, Robertson P, et al. (December 2017). "Effect of Food on the Pharmacokinetics of Single- and Multiple-Dose Hydrocodone Extended Release in Healthy Subjects". Clinical Drug Investigation. 37 (12): 1153–1163. doi:10.1007/s40261-017-0575-3. PMID28948482. S2CID32440860.{{cite journal}}: CS1 maint: overridden setting (link)
^Kaplan HL, Busto UE, Baylon GJ, Cheung SW, Otton SV, Somer G, et al. (April 1997). "Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability". The Journal of Pharmacology and Experimental Therapeutics. 281 (1): 103–108. PMID9103485.
^Gardiner SJ, Begg EJ (September 2006). "Pharmacogenetics, drug-metabolizing enzymes, and clinical practice". Pharmacological Reviews. 58 (3): 521–590. doi:10.1124/pr.58.3.6. PMID16968950. S2CID25747320.
^Navani DM, Yoburn BC (November 2013). "In vivo activity of norhydrocodone: an active metabolite of hydrocodone". The Journal of Pharmacology and Experimental Therapeutics. 347 (2): 497–505. doi:10.1124/jpet.113.207548. PMID23995596. S2CID31072872.
^Madadi P, Hildebrandt D, Gong IY, Schwarz UI, Ciszkowski C, Ross CJ, et al. (October 2010). "Fatal hydrocodone overdose in a child: pharmacogenetics and drug interactions". Pediatrics. 126 (4): e986–e989. doi:10.1542/peds.2009-1907. PMID20837591. S2CID42365304.{{cite journal}}: CS1 maint: overridden setting (link)
^"Hydrocodone Combination Products". MedlinePlus. The American Society of Health-System Pharmacists, Inc. Archived from the original on 5 July 2016. Retrieved 14 July 2018.